V. Wakelam, J. Loison, E. Herbst, B. Pavone, A. Bergeat et al., The 2014 KIDA network for interstellar chemistry, Astrophys J Suppl Ser, vol.217, p.20, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137231

G. Dupeyrat, J. B. Marquette, and B. R. Rowe, Design and testing of axisymmetric nozzles for ion-molecule reaction studies between 20 °K and 160 °K, Phys Fluids, vol.28, pp.1273-1282, 1985.

I. R. Cooke and I. R. Sims, Experimental Studies of Gas-Phase Reactivity in Relation to Complex Organic Molecules in Star-Forming Regions, ACS Earth Space Chem, vol.3, pp.1109-1143, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02278042

D. L. Osborn, P. Zou, H. Johnsen, C. C. Hayden, C. A. Taatjes et al., The multiplexed chemical kinetic photoionization mass spectrometer: A new approach to isomer-resolved chemical kinetics, Rev Sci Instrum, vol.79, p.104103, 2008.

J. F. Lockyear, M. Fournier, I. R. Sims, J. Guillemin, C. A. Taatjes et al., Formation of fulvene in the reaction of C2H with 1,3-butadiene, Int J Mass Spectrom, vol.378, pp.232-277, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01069616

J. Bourgalais, M. Spencer, D. L. Osborn, F. Goulay, L. Picard et al., Reactions of Atomic Carbon with Butene Isomers: Implications for Molecular Growth in Carbon-Rich Environments, J Phys Chem A, vol.120, pp.9138-50, 2016.

S. Soorkia, C. Liu, J. D. Savee, S. J. Ferrell, S. R. Leone et al., Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: Application to low-temperature kinetics and product detection, Rev Sci Instrum, vol.82, p.124102, 2011.

J. Bouwman, M. Fournier, I. R. Sims, S. R. Leone, and K. R. Wilson, Reaction Rate and Isomer-Specific Product Branching Ratios of C2H + C4H8: 1-Butene, cis-2-Butene, trans-2-Butene, and Isobutene at 79 K, J Phys Chem A, vol.117, pp.5093-105, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844546

J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument et al., A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system, J Chem Phys, vol.141, p.154202, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131478

C. Abeysekera, L. N. Zack, G. B. Park, B. Joalland, J. M. Oldham et al., A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics, J Chem Phys, vol.141, p.214203, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131478

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman et al., A broadband Fourier transform microwave spectrometer based on chirped pulse excitation, Rev Sci Instrum, vol.79, p.53103, 2008.

C. Abeysekera, B. Joalland, N. Ariyasingha, L. N. Zack, I. R. Sims et al., Product Branching in the Low Temperature Reaction of CN with Propyne by Chirped-Pulse Microwave Spectroscopy in a Uniform Supersonic Flow, J Phys Chem Lett, vol.6, pp.1599-604, 2015.

G. B. Park and R. W. Field, Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy, J Chem Phys, vol.144, 2016.

D. Patterson and J. M. Doyle, Cooling molecules in a cell for FTMW spectroscopy, Mol Phys, vol.110, pp.1757-66, 2012.

B. J. Harris, A. L. Steber, K. K. Lehmann, and B. H. Pate, Gas Analysis by Fourier Transform mm-wave Spectroscopy, 2013.

B. Harris, A Chirped Pulse Fourier Transform Millimeter Wave Spectrometer for Room Temperature, Gas Mixture Analysis. University of Virginia, 2014.

F. Hindle, C. Bray, K. Hickson, D. Fontanari, M. Mouelhi et al., Chirped Pulse Spectrometer Operating at 200 GHz, J Infrared Millim Terahertz Waves, vol.39, pp.105-124, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01892031

C. P. Endres, P. Caselli, and S. Schlemmer, State-to-State Rate Coefficients for NH3-NH3 Collisions from Pump-Probe Chirped Pulse Experiments, J Phys Chem Lett, vol.10, pp.4836-4877, 2019.

H. Mäder, J. Ekkers, W. Hoke, and W. H. Flygare, A ?, ?, ?/2 type pulse sequence method for the determination of T1 in rotational transitions, J Chem Phys, vol.62, pp.4380-4387, 1975.

F. A. Liuima, A. V. Bushkovitch, and A. G. Rouse, Pressure Broadening of OCS in Foreign Gas Mixtures, Phys Rev, vol.96, pp.434-439, 1954.

M. J. Burns and S. L. Coy, Rotational relaxation rates for the OCS J=0-1 pure rotational transition broadened by argon and helium, J Chem Phys, vol.80, pp.3544-51, 1984.

K. A. Ross and D. R. Willey, Low temperature pressure broadening of OCS by He, J Chem Phys, vol.122, p.204308, 2005.

K. H. Casleton, K. Chien, P. B. Foreman, and S. G. Kukolich, Rotational relaxation measurements on OCS using a beam maser, Chem Phys Lett, vol.36, issue.75, pp.80243-80243, 1975.

I. C. Story, V. I. Metchnik, and R. W. Parsons, The measurement of the widths and pressure-induced shifts of microwave spectra lines, J Phys B At Mol Phys, vol.4, pp.593-608, 1971.

M. Broquier, A. Picard-bersellini, B. J. Whitaker, and S. Green, Rotational inelastic cross sections for OCS-Ar, OCS-He, OCS-H2 collisions: A comparison between theory and experiment, J Chem Phys, vol.84, pp.2104-2111, 1986.

W. Liu and R. A. Marcus, Theory of the relaxation matrix and its relation to microwave transient phenomena. II. Semiclassical calculations for systems of OCS and nonpolar collisions partners, J Chem Phys, vol.63, pp.4564-4564, 1975.

S. Green, On the amount of information in rotational relaxation experiments with application to microwave transient T1 and T2 rates, J Chem Phys, vol.69, pp.4076-82, 1978.

K. Higgins and W. Klemperer, The intermolecular potential of He-OCS, J Chem Phys, vol.110, pp.1383-1391, 1999.

D. R. Flower, The rotational excitation of OCS by He at low temperatures, Mon Not R Astron Soc, vol.328, pp.147-156, 2001.

J. S. Wilzewski, I. E. Gordon, R. V. Kochanov, C. Hill, L. Rothman et al., H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database, J Quant Spectrosc Radiat Transf, vol.168, pp.193-206, 2016.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, 1987.

J. C. Mcgurk, T. G. Schmalz, and W. H. Flygare, Fast passage in rotational spectroscopy: Theory and experiment, J Chem Phys, vol.60, pp.4181-4189, 1974.

F. Wolf, Fast sweep experiments in microwave spectroscopy, J Phys Appl Phys, vol.27, pp.1774-1780, 1994.

G. B. Park, A. H. Steeves, K. Kuyanov-prozument, J. L. Neill, and R. W. Field, Design and evaluation of a pulsedjet chirped-pulse millimeter-wave spectrometer for the 70-102 GHz region, J Chem Phys, vol.135, p.24202, 2011.

J. Grabow, Fourier Transform Microwave Spectroscopy Measurement and Instrumentation, Quack M, Merkt F, editors. Handb. High-Resolut. Spectrosc, 2011.

J. C. Mcgurk, H. Mäder, R. T. Hofmann, T. G. Schmalz, and W. H. Flygare, Transient emission, off-resonant transient absorption, and Fourier transform microwave spectroscopy, J Chem Phys, vol.61, pp.3759-67, 1974.

R. H. Schwendeman, Transient Effects in Microwave Spectroscopy, Annu Rev Phys Chem, vol.29, pp.537-58, 1978.

H. Mäder, Microwave fourier transform spectroscopy: Linewidth effects in the low pressure limit, J Quant Spectrosc Radiat Transf, vol.32, pp.90077-90080, 1984.

J. C. Mcgurk, R. T. Hofmann, and W. H. Flygare, Transient absorption and emission and the measurement of T1 and T2 in the J O?1 rotational transition in OCS, J Chem Phys, vol.60, pp.2922-2930, 1974.

W. E. Hoke, D. R. Bauer, J. Ekkers, and W. H. Flygare, The measurement and interpretation of T1 and T2 in the inversion doublets of 15NH3 and the rotational transitions in OCS, J Chem Phys, vol.64, pp.5276-82, 1976.

H. Mäder, W. Lalowski, and R. Schwarz, Investigation of T1 and T2 Relaxation for Ethylene Oxide Rotational Transitions, Z Für Naturforschung A, vol.34, pp.1181-1184, 1979.

H. Mäder, H. Bomsdorf, and U. Andresen, The Measurement of Rotational Relaxation Time T2 for CH3C15N Self-and Foreign Gas Collisions, Z Für Naturforschung A, vol.34, pp.850-857, 1979.

S. C. Mehrotra, G. Bestmann, H. Dreizler, and H. Mäder, A Contribution to the Investigation of T2-Relaxation: Rotational Transitions of OCS and SO2, Z Für Naturforschung A, vol.39, pp.633-636, 1984.

S. C. Mehrotra, H. Dreizler, and H. Mäder, Investigations of self-, H2-and He-broadening for rotational transitions of HCCC15N, CF3D and CF3CCH by the microwave transient emmission technique, J Quant Spectrosc Radiat Transf, vol.34, pp.229-260, 1985.

S. C. Mehrotra, H. Dreizler, and H. Mäder, J-Dependence of T2-Parameters for Rotational Transitions of SO2 and CH3OH in K-Band, Z Für Naturforschung A, vol.40, pp.683-685, 1985.

S. C. Mehrotra and H. Mäder, Study of T1-and T2-Relaxation by Microwave Pulse Techniques: Rotational Transition J=0-1 of HCCF,J-Dependence of Rotational Transitions of S02,and l-Type Doublet Transitions of HC15N Perturbed by Self, H2, D2, and He, Z Für Naturforschung A, vol.43, pp.454-468, 1988.

J. Haekel and H. Mäder, Determination of Spectral Parameters in Microwave Fouriertransform Spectroscopy by Analysis of Time-Domain Signals, Z Für Naturforschung A, vol.43, pp.203-206, 1988.

S. L. Coy, Speed dependence of microwave rotational relaxation rates, J Chem Phys, vol.73, pp.5531-55, 1980.

J. Haekel and H. Mäder, Speed-dependent T2-relaxation rates of microwave emission signals, J Quant Spectrosc Radiat Transf, vol.46, pp.21-30, 1991.

F. Rohart, H. Mäder, and H. Nicolaisen, Speed dependence of rotational relaxation induced by foreign gas collisions: Studies on CH3F by millimeter wave coherent transients, J Chem Phys, vol.101, pp.6475-86, 1994.

J. He and C. Zhang, The accurate calculation of the Fourier transform of the pure Voigt function, J Opt Pure Appl Opt, vol.7, pp.613-616, 2005.

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J Soc Ind Appl Math, vol.11, pp.431-472, 1963.

D. P. Zaleski and K. Prozument, Pseudo-equilibrium geometry of HNO determined by an E-Band CP-FTmmW spectrometer, Chem Phys Lett, vol.680, pp.101-109, 2017.

B. E. Arenas, S. Gruet, A. L. Steber, B. M. Giuliano, and M. Schnell, Chirped-pulse Fourier transform millimeterwave spectroscopy of ten vibrationally excited states of i-propyl cyanide: exploring the far-infrared region, Phys Chem Chem Phys, vol.19, pp.1751-1757, 2017.

D. P. Zaleski, J. L. Neill, M. T. Muckle, N. A. Seifert, B. Carroll et al., A Ka-band chirped-pulse Fourier transform microwave spectrometer, J Mol Spectrosc, vol.280, pp.68-76, 2012.

A. L. Steber, B. J. Harris, J. L. Neill, and B. H. Pate, An arbitrary waveform generator based chirped pulse Fourier transform spectrometer operating from 260 to 295GHz, J Mol Spectrosc, vol.280, pp.3-10, 2012.

J. L. Neill, B. J. Harris, A. L. Steber, K. O. Douglass, D. F. Plusquellic et al., Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis, Opt Express, vol.21, pp.19743-19752, 2013.

A. O. Hernandez-castillo, C. Abeysekera, B. M. Hays, and T. S. Zwier, Broadband multi-resonant strong field coherence breaking as a tool for single isomer microwave spectroscopy, J Chem Phys, vol.145, p.114203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02361996

J. Boissoles, F. Thibault, R. L. Doucen, V. Menoux, and C. Boulet, Line mixing effects in the 00°3-00°0 band of CO2 in helium. II. Theoretical analysis, J Chem Phys, vol.100, pp.215-238, 1994.

F. Rohart, A. Ellendt, F. Kaghat, and H. Mäder, Self and Polar Foreign Gas Line Broadening and Frequency Shifting of CH3F: Effect of the Speed Dependence Observed by Millimeter-Wave Coherent Transients, J Mol Spectrosc, vol.185, pp.222-255, 1997.

T. Köhler and H. Mäder, Measurement of speed dependent rotational relaxation rates using a microwave spectrometer with a circular waveguide, Mol Phys, vol.86, pp.287-300, 1995.

N. Wehres, B. Heyne, F. Lewen, M. Hermanns, B. Schmidt et al., 100 GHz Room-Temperature Laboratory Emission Spectrometer, Proc Int Astron Union, vol.13, pp.332-377, 2017.

N. Wehres, J. Maßen, K. Borisov, B. Schmidt, F. Lewen et al., A laboratory heterodyne emission spectrometer at submillimeter wavelengths, Phys Chem Chem Phys, vol.20, pp.5530-5574, 2018.