M. R. Alderson, R. J. Armitage, E. Maraskovsky, T. W. Tough, E. Roux et al., Fas transduces activation signals in normal human T lymphocytes, J. Exp. Med, vol.178, pp.2231-2235, 1993.

V. Anathy, S. W. Aesif, A. S. Guala, M. Havermans, N. L. Reynaert et al., Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas, J. Cell Biol, vol.184, pp.241-252, 2009.

K. Aoki, M. Kurooka, J. J. Chen, J. Petryniak, E. G. Nabel et al., Extracellular matrix interacts with soluble CD95L: retention and enhancement of cytotoxicity, Nat. Immunol, vol.2, pp.333-337, 2001.

P. Arroyo-manez, D. E. Bikiel, L. Boechi, L. Capece, S. Di-lella et al., Protein dynamics and ligand migration interplay as studied by computer simulation, Biochim. Biophys. Acta, vol.1814, pp.1054-1064, 2011.

A. Ashkenazi and V. M. Dixit, Death receptors: signaling and modulation, Science, vol.281, pp.1305-1308, 1998.

K. Bajou, H. Peng, W. E. Laug, C. Maillard, A. Noel et al., Plasminogen activator inhibitor-1 protects endothelial cells from FasLmediated apoptosis, Cancer Cell, vol.14, pp.324-334, 2008.

B. C. Barnhart, P. Legembre, E. Pietras, C. Bubici, G. Franzoso et al., CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells, EMBO J, vol.23, pp.3175-3185, 2004.

T. Boch, T. Luft, G. Metzgeroth, M. Mossner, J. C. Jann et al., Safety and efficacy of the CD95-ligand inhibitor asunercept in transfusiondependent patients with low and intermediate risk MDS, Leuk. Res, vol.68, pp.62-69, 2018.

J. L. Bodmer, P. Schneider, and J. Tschopp, The molecular architecture of the TNF superfamily, Trends Biochem. Sci, vol.27, pp.1995-2003, 2002.

J. Cao, F. Meng, X. Gao, H. Dong, and W. Yao, Expression and purification of a natural N-terminal pre-ligand assembly domain of tumor necrosis factor receptor 1 (TNFR1 PLAD) and preliminary activity determination, Protein J, vol.30, pp.281-289, 2011.

K. Chakrabandhu, Z. Herincs, S. Huault, B. Dost, L. Peng et al., Palmitoylation is required for efficient Fas cell death signaling, EMBO J, vol.26, pp.209-220, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165458

K. Chakrabandhu, S. Huault, J. Durivault, K. Lang, L. Ta-ngoc et al., An evolution-guided analysis reveals a multi-signaling regulation of fas by tyrosine phosphorylation and its implication in human cancers, PLoS Biol, vol.14, p.1002401, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438523

K. Chakrabandhu and A. O. Hueber, Fas versatile signaling and beyond: pivotal role of tyrosine phosphorylation in context-dependent signaling and diseases, Front. Immunol, vol.7, p.429, 2016.

F. K. Chan, H. J. Chun, L. Zheng, R. M. Siegel, K. L. Bui et al., A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling, Science, vol.288, pp.2351-2354, 2000.

M. Chodorge, S. Zuger, C. Stirnimann, C. Briand, L. Jermutus et al., A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency, Cell Death Differ, vol.19, pp.1187-1195, 2012.

S. P. Cullen, C. M. Henry, C. J. Kearney, S. E. Logue, M. Feoktistova et al., Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells, Mol. Cell, vol.49, pp.1034-1048, 2013.

I. Daigle, S. Yousefi, M. Colonna, D. R. Green, and H. U. Simon, Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils, Nat. Med, vol.8, pp.61-67, 2002.

T. De-la-motte-rouge, J. Corne, A. Cauchois, M. Le-boulch, C. Poupon et al., Serum CD95L level correlates with tumor immune infiltration and is a positive prognostic marker for advanced high-grade serous ovarian cancer, Mol. Cancer Res, vol.17, pp.2537-2548, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02304765

J. Desbarats, R. B. Birge, M. Mimouni-rongy, D. E. Weinstein, J. S. Palerme et al., Fas engagement induces neurite growth through ERK activation and p35 upregulation, Nat. Cell Biol, vol.5, pp.118-125, 2003.

J. Desbarats and M. K. Newell, Fas engagement accelerates liver regeneration after partial hepatectomy, Nat. Med, vol.6, pp.920-923, 2000.

C. Dostert, M. Grusdat, E. Letellier, and D. Brenner, The TNF family of ligands and receptors: communication modules in the immune system and beyond, Physiol. Rev, vol.99, pp.115-160, 2019.

F. Dufour, T. Rattier, S. Shirley, G. Picarda, A. A. Constantinescu et al., N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death, Cell Death Differ, vol.24, pp.500-510, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01467849

R. L. Dunbrack, Sequence comparison and protein structure prediction, Curr. Opin. Struct. Biol, vol.16, pp.374-384, 2006.

V. Edmond, B. Ghali, A. Penna, J. L. Taupin, S. Daburon et al., precise mapping of the CD95 pre-ligand assembly domain, PLoS One, vol.7, p.46236, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00873708

D. Esposito, A. Sankar, N. Morgner, C. V. Robinson, K. Rittinger et al., Solution NMR investigation of the CD95/FADD homotypic death domain complex suggests lack of engagement of the CD95 C terminus, Structure, vol.18, pp.1378-1390, 2010.

C. Feig, V. Tchikov, S. Schutze, and M. E. Peter, Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling, EMBO J, vol.26, pp.221-231, 2007.

J. Felsenstein, Mathematics vs. Evolution: mathematical evolutionary theory, Science, vol.246, pp.941-942, 1989.

R. Ferrao and H. Wu, Helical assembly in the death domain (DD) superfamily, Curr. Opin. Struct. Biol, vol.22, pp.241-247, 2012.

C. Frantz, G. Barreiro, L. Dominguez, X. Chen, R. Eddy et al., Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding, J. Cell Biol, vol.183, pp.865-879, 2008.

C. Frantz, A. Karydis, P. Nalbant, K. M. Hahn, and D. L. Barber, Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells, J. Cell Biol, vol.179, pp.403-410, 2007.

Q. Fu, T. M. Fu, A. C. Cruz, P. Sengupta, S. K. Thomas et al., Structural basis and functional role of intramembrane trimerization of the Fas/CD95 death receptor, Mol. Cell, vol.61, pp.602-613, 2016.

L. Gagnoux-palacios, H. Awina, S. Audebert, A. Rossin, M. Mondin et al., Cell polarity and adherens junction formation inhibit epithelial Fas cell death receptor signaling, J. Cell Biol, vol.217, pp.3839-3852, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02374965

C. Gajate, E. Del-canto-janez, A. U. Acuna, F. Amat-guerri, E. Geijo et al., Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis, J. Exp. Med, vol.200, pp.353-365, 2004.

L. Gao, G. S. Gulculer, L. Golbach, H. Block, A. Zarbock et al., Endothelial cell-derived CD95 ligand serves as a chemokine in induction of neutrophil slow rolling and adhesion, vol.5, p.18542, 2016.

H. Grassme, A. Cremesti, R. Kolesnick, and E. Gulbins, Ceramidemediated clustering is required for CD95-DISC formation, Oncogene, vol.22, pp.5457-5470, 2003.

M. Grell, E. Douni, H. Wajant, M. Lohden, M. Clauss et al., The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor, Cell, vol.83, pp.793-802, 1995.

J. P. Guegan and P. Legembre, Nonapoptotic functions of Fas/CD95 in the immune response, FEBS J, vol.285, pp.809-827, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744407

G. Balta, G. S. Monzel, C. Kleber, S. Beaudouin, J. Balta et al., 3D Cellular architecture modulates tyrosine kinase activity, thereby switching CD95-mediated apoptosis to survival, Cell Rep, vol.29, pp.2295-2306, 2019.

H. Hashimoto, M. Tanaka, T. Suda, T. Tomita, K. Hayashida et al., Soluble Fas ligand in the joints of patients with rheumatoid arthritis and osteoarthritis, Arthritis Rheum, vol.41, pp.657-662, 1998.

C. M. Henry and S. J. Martin, Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory "FADDosome" complex upon TRAIL stimulation, Mol. Cell, vol.65, pp.715-729, 2017.

R. Herrero, O. Kajikawa, G. Matute-bello, Y. Wang, N. Hagimoto et al., The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region, J. Clin. Invest, vol.121, pp.1174-1190, 2011.

N. Holler, A. Tardivel, M. Kovacsovics-bankowski, S. Hertig, O. Gaide et al., Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex, Mol. Cell Biol, vol.23, pp.1428-1440, 2003.

F. J. Hoogwater, M. W. Nijkamp, N. Smakman, E. J. Steller, B. L. Emmink et al., Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells, Gastroenterology, vol.138, pp.2357-2367, 2010.

B. Huang, M. Eberstadt, E. T. Olejniczak, R. P. Meadows, and S. W. Fesik, NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain, Nature, vol.384, pp.638-641, 1996.

M. A. Hughes, I. R. Powley, R. Jukes-jones, S. Horn, M. Feoktistova et al., Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate, Mol. Cell, vol.61, pp.834-849, 2016.

N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima et al., The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell, vol.66, issue.91, pp.90614-90619, 1991.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol, vol.30, pp.772-780, 2013.

O. T. Keppler, M. E. Peter, S. Hinderlich, G. Moldenhauer, P. Stehling et al., Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus, Glycobiology, vol.9, pp.557-569, 1999.

F. C. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, EMBO J, vol.14, pp.5579-5588, 1995.

S. Kleber, I. Sancho-martinez, B. Wiestler, A. Beisel, C. Gieffers et al., Yes and PI3K bind CD95 to signal invasion of glioblastoma, Cancer Cell, vol.13, pp.235-248, 2008.

S. Kreuz, D. Siegmund, J. J. Rumpf, D. Samel, M. Leverkus et al., NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP, J. Cell Biol, vol.166, pp.369-380, 2004.

E. Krissinel and K. Henrick, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol, vol.372, pp.774-797, 2007.

K. H. Lee, C. Feig, V. Tchikov, R. Schickel, C. Hallas et al., The role of receptor internalization in CD95 signaling, EMBO J, vol.25, pp.1009-1023, 2006.

L. Leon-bollotte, S. Subramaniam, O. Cauvard, S. Plenchette-colas, C. Paul et al., S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells, Gastroenterology, vol.140, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00680824

N. Levoin, Sketching of CD95 oligomers by in silico investigations, Methods Mol. Biol, vol.1557, pp.153-171, 2017.

W. Liu, U. Ramagopal, H. Cheng, J. B. Bonanno, R. Toro et al., Crystal structure of the complex of human FasL and its decoy receptor DcR3, Structure, vol.24, pp.2016-2023, 2016.

M. Malleter, S. Tauzin, A. Bessede, R. Castellano, A. Goubard et al., CD95L cell surface cleavage triggers a prometastatic signaling pathway in triple-negative breast cancer, Cancer Res, vol.73, pp.6711-6721, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873634

A. Marchesi, X. Gao, R. Adaixo, J. Rheinberger, H. Stahlberg et al., An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel, Nat. Commun, vol.9, p.3978, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01883688

A. E. Mccarthy, C. Yoshioka, and S. E. Mansoor, Full-length P2X7 structures reveal how palmitoylation prevents channel desensitization, Cell, vol.179, pp.659-670, 2019.

O. Micheau, Regulation of TNF-related apoptosis-inducing ligand signaling by glycosylation, Int. J. Mol. Sci, vol.19, p.715, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01722814

O. Micheau and J. Tschopp, Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, vol.114, p.521, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00527105

M. Monet, M. Poet, S. Tauzin, A. Fouque, A. Cophignon et al., The cleaved FAS ligand activates the Na(+)/H(+) exchanger NHE1 through Akt/ROCK1 to stimulate cell motility, Sci. Rep, vol.6, p.28008, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01334067

J. R. Muppidi and R. M. Siegel, Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death, Nat. Immunol, vol.5, pp.182-189, 2004.

A. G. Murzin, How far divergent evolution goes in proteins, Curr. Opin. Struct. Biol, vol.8, pp.380-387, 1998.

L. A. O'-reilly, L. Tai, L. Lee, E. A. Kruse, S. Grabow et al., Membrane-bound Fas ligand only is essential for Fas-induced apoptosis, Nature, vol.461, pp.659-663, 2009.

J. R. Orlinick, K. B. Elkon, and M. V. Chao, Separate domains of the human fas ligand dictate self-association and receptor binding, J. Biol. Chem, vol.272, pp.32221-32229, 1997.

L. Pan, T. M. Fu, W. Zhao, L. Zhao, W. Chen et al., Higherorder clustering of the transmembrane anchor of DR5 drives signaling, Cell, vol.176, pp.1477-1489, 2019.

G. Papoff, I. Cascino, A. Eramo, G. Starace, D. H. Lynch et al., , 1996.

, An N-terminal domain shared by Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro, J. Immunol, vol.156, pp.4622-4630

G. Papoff, P. Hausler, A. Eramo, M. G. Pagano, G. Di-leve et al., Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor, J. Biol. Chem, vol.274, pp.38241-38250, 1999.

O. D. Perez, S. Kinoshita, Y. Hitoshi, D. G. Payan, T. Kitamura et al., Activation of the PKB/AKT pathway by ICAM-2, Immunity, vol.16, pp.51-65, 2002.

M. E. Peter, S. Hellbardt, R. Schwartz-albiez, M. O. Westendorp, H. Walczak et al., Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death, Cell Death Differ, vol.2, pp.163-171, 1995.

A. Poissonnier, D. Sanseau, M. Le-gallo, M. Malleter, N. Levoin et al., CD95-mediated calcium signaling promotes T helper 17 trafficking to inflamed organs in lupus-prone mice, Immunity, vol.45, pp.209-223, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359568

L. K. Putney, S. P. Denker, and D. L. Barber, The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions, Annu. Rev. Pharmacol. Toxicol, vol.42, pp.527-552, 2002.

L. Qiao, E. Studer, K. Leach, R. Mckinstry, S. Gupta et al., Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis, Mol. Biol. Cell, vol.12, pp.2629-2645, 2001.

R. Reinehr, D. Graf, and D. Haussinger, Bile salt-induced hepatocyte apoptosis involves epidermal growth factor receptor-dependent CD95 tyrosine phosphorylation, Gastroenterology, vol.125, pp.839-853, 2003.

R. Reinehr, F. Schliess, and D. Haussinger, Hyperosmolarity and CD95L trigger CD95/EGF receptor association and tyrosine phosphorylation of CD95 as prerequisites for CD95 membrane trafficking and DISC formation, FASEB J, vol.17, pp.731-733, 2003.

R. Reinehr, A. Sommerfeld, and D. Haussinger, CD95 ligand is a proliferative and antiapoptotic signal in quiescent hepatic stellate cells, Gastroenterology, vol.134, pp.1494-1506, 2008.

T. Sato, S. Irie, S. Kitada, and J. C. Reed, FAP-1: a protein tyrosine phosphatase that associates with Fas, Science, vol.268, pp.411-415, 1995.

P. Schneider, J. L. Bodmer, N. Holler, C. Mattmann, P. Scuderi et al., Characterization of Fas (Apo-1, CD95)-Fas ligand interaction, J. Biol. Chem, vol.272, pp.18827-18833, 1997.

P. Schneider, N. Holler, J. L. Bodmer, M. Hahne, K. Frei et al., Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity, J. Exp. Med, vol.187, pp.1205-1213, 1998.

D. Schneidman-duhovny, Y. Inbar, R. Nussinov, and H. J. Wolfson, Geometry-based flexible and symmetric protein docking, Proteins, vol.60, pp.224-231, 2005.

D. Schneidman-duhovny, Y. Inbar, R. Nussinov, and H. J. Wolfson, PatchDock and SymmDock: servers for rigid and symmetric docking, Nucleic Acids Res, vol.33, pp.363-367, 2005.

F. L. Scott, B. Stec, C. Pop, M. K. Dobaczewska, J. J. Lee et al., The Fas-FADD death domain complex structure unravels signalling by receptor clustering, Nature, vol.457, pp.1019-1022, 2009.

O. M. Shatnyeva, A. V. Kubarenko, C. E. Weber, A. Pappa, R. Schwartz-albiez et al., Modulation of the CD95-induced apoptosis: the role of CD95 N-glycosylation, PLoS One, vol.6, p.19927, 2011.

R. M. Siegel, J. K. Frederiksen, D. A. Zacharias, F. K. Chan, M. Johnson et al., Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations, Science, vol.288, pp.2354-2357, 2000.

D. Siegmund, I. Lang, and H. Wajant, Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2, FEBS J, vol.284, pp.1131-1159, 2017.

J. P. Steinbach, P. Supra, H. J. Huang, W. K. Cavenee, and M. Weller, CD95-mediated apoptosis of human glioma cells: modulation by epidermal growth factor receptor activity, Brain Pathol, vol.12, pp.12-20, 2002.

T. Suda, H. Hashimoto, M. Tanaka, T. Ochi, and S. Nagata, Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing, J. Exp. Med, vol.186, pp.2045-2050, 1997.

M. Tanaka, T. Itai, M. Adachi, and S. Nagata, Downregulation of Fas ligand by shedding, Nat. Med, vol.4, pp.31-36, 1998.

M. Tanaka, T. Suda, K. Haze, N. Nakamura, K. Sato et al., Fas ligand in human serum, Nat. Med, vol.2, pp.317-322, 1996.

S. Tauzin, B. Chaigne-delalande, E. Selva, N. Khadra, S. Daburon et al., The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway, PLoS Biol, vol.9, p.1001090, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00681970

S. Tauzin, L. Debure, J. F. Moreau, and P. Legembre, CD95-mediated cell signaling in cancer: mutations and post-translational modulations, Cell. Mol. Life Sci, vol.69, pp.1261-1277, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00682466

M. Voss, M. Lettau, M. Paulsen, and O. Janssen, Posttranslational regulation of Fas ligand function, Cell Commun. Signal, vol.6, p.11, 2008.

K. W. Wagner, E. A. Punnoose, T. Januario, D. A. Lawrence, R. M. Pitti et al., Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL, Nat. Med, vol.13, pp.1070-1077, 2007.

H. Wajant, Principles of antibody-mediated TNF receptor activation, Cell Death Differ, vol.22, pp.1727-1741, 2015.

H. Wako and S. Endo, Normal mode analysis as a method to derive protein dynamics information from the protein data bank, Biophys. Rev, vol.9, pp.877-893, 2017.

L. Wang, J. K. Yang, V. Kabaleeswaran, A. J. Rice, A. C. Cruz et al., The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations, Nat. Struct. Mol. Biol, vol.17, pp.1324-1329, 2010.

X. Wang, M. C. Defrances, Y. Dai, P. Pediaditakis, C. Johnson et al., A mechanism of cell survival: sequestration of Fas by the HGF receptor Met, Mol. Cell, vol.9, pp.411-421, 2002.

Y. Wang, K. Bugge, B. B. Kragelund, and K. Lindorff-larsen, Role of protein dynamics in transmembrane receptor signalling, Curr. Opin. Struct. Biol, vol.48, pp.74-82, 2018.

W. Wick, H. Fricke, K. Junge, G. Kobyakov, T. Martens et al., A phase II, randomized, study of weekly APG101+reirradiation versus reirradiation in progressive glioblastoma, Clin. Cancer Res, vol.20, pp.6304-6313, 2014.

N. Yoder, C. Yoshioka, and E. Gouaux, Gating mechanisms of acidsensing ion channels, Nature, vol.555, pp.397-401, 2018.