M. Malumbres, E. Harlow, T. Hunt, T. Hunter, J. M. Lahti et al., Cyclin-dependent kinases: a family portrait, Nat Cell Biol, vol.11, issue.11, pp.1275-1281, 2009.

M. Malumbres and M. Barbacid, CDKs and cancer: a changing paradigm, Nat Rev Cancer, vol.9, issue.3, pp.153-66, 2009.

P. Hydbring, M. Malumbres, and P. Sicinski, Non-canonical functions of cell cycle cyclins and cyclindependent kinases, Nat Rev Mol Cell Biol, vol.17, issue.5, pp.280-92, 2016.

D. J. Wood and J. A. Endicott, Structural insights into the functional diversity of the CDK-cyclin family, Open Biol, vol.8, issue.9, p.180112, 2018.

Z. Ma, Y. Wu, J. Jin, J. Yan, S. Kuang et al., Phylogenetic analysis reveals the evolution and diversification of cyclins in eukaryotes, Mol Phylogenet Evol, vol.3, pp.1002-2010, 2013.

E. Quandt, M. P. Ribeiro, and J. Clotet, Atypical cyclins: the extended family portrait, Cell Mol Life Sci, vol.77, issue.2, pp.231-242, 2020.

P. Loyer, J. H. Trembley, J. A. Grenet, A. Busson, A. Corlu et al., Characterization of cyclin L1 and L2 interactions with CDK11 and splicing factors: influence of cyclin L isoforms on splice site selection, J Biol Chem, vol.283, issue.12, pp.7721-7753, 2008.

G. Lolli, Structural dissection of cyclin dependent kinases regulation and protein recognition properties, Cell Cycle, vol.9, issue.8, pp.1551-61, 2010.

P. Loyer, J. H. Trembley, R. Katona, V. J. Kidd, and J. M. Lahti, Role of CDK/cyclin complexes in transcription and RNA splicing, Cell Signal, vol.17, issue.9, pp.1033-51, 2005.

T. J. Gibson, J. D. Thompson, A. Blocker, and T. Kouzarides, Evidence for a protein domain superfamily shared by the cyclins, TFIIB and RB/p107, Nucleic Acids Res, vol.22, issue.6, pp.946-52, 1994.

O. Kolesnikova, L. Radu, and A. Poterszman, TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair, Adv Protein Chem Struct Biol, vol.115, pp.21-67, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02408235

S. Lim and P. , Kaldis CDKs, cyclins and CKIs: Roles beyond cell cycle regulation, Development, vol.140, issue.15, pp.3079-93, 2013.

C. Jeronimo and F. Robert, The Mediator complex: At the nexus of RNA polymerase II transcription, Trends Cell Biol, issue.10, pp.765-783, 2017.

C. W. Bacon and I. D'orso, CDK9: a signaling hub for transcriptional control Transcription, vol.10, pp.57-75, 2019.

A. P. Rice, Role of CDKs in RNA polymerase II transcription of the HIV-1 genome, Transcription, vol.10, issue.2, pp.111-117, 2019.

H. Maita and S. Nakagawa, What is the switch for coupling transcription and splicing? RNA Polymerase II C-terminal domain phosphorylation, phase separation and beyond, Wiley Interdiscip Rev RNA, vol.11, issue.1, p.1574, 2020.

S. Naftelberg, I. E. Schor, G. Ast, and A. R. Kornblihtt, Regulation of alternative splicing through coupling with transcription and chromatin structure, Annu Rev Biochem, vol.84, pp.165-98, 2015.

M. Larochelle, J. Hunyadkürti, and F. Bachand, Polyadenylation site selection: linking transcription and RNA processing via a conserved carboxy-terminal domain (CTD)-interacting protein, Curr Genet, vol.63, issue.2, pp.195-199, 2017.

S. A. Peck, K. D. Hughes, J. F. Victorino, and A. L. Mosley, Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control, Wiley Interdiscip Rev RNA, vol.10, issue.4, p.1529, 2019.

L. Dimitrova-paternoga, P. K. Jagtap, P. C. Chen, and J. Hennig, Integrative structural biology of protein-RNA complexes, Structure, vol.28, issue.1, pp.6-28, 2020.

G. Napolitano, L. Lania, and B. Majello, RNA polymerase II CTD modifications: how many tales from a single tail, J Cell Physiol, vol.229, issue.5, pp.538-582, 2014.

J. Zaborowska, S. Egloff, and S. Murphy, The pol II CTD: new twists in the tail, Nat Struct Mol Biol, vol.23, issue.9, pp.771-778, 2016.

R. Wan, R. Bai, and Y. Shi, Molecular choreography of pre-mRNA splicing by the spliceosome, Curr Opin Struct Biol, vol.59, pp.124-133, 2019.

M. Wilkinson, C. Charenton, and K. Naigai, RNA Splicing by the Spliceosome, Annu Rev Biochem

M. S. Kobor and J. Greenblatt, Regulation of transcription elongation by phosphorylation, Biochim Biophys Acta, vol.1577, issue.2, pp.261-275, 2002.

M. Sansó and R. P. Fisher, Pause, play, repeat, vol.4, pp.146-152, 2013.

Y. E. Guo, J. C. Manteiga, J. E. Henninger, B. R. Sabari, A. Dall'agnese et al.,

A. V. Afeyan, K. Zamudio, B. J. Shrinivas, A. Abraham, T. M. Boija et al.,

I. Cisse, P. A. Sharp, D. J. Taatjes, D. J. , and R. A. Young, Pol II phosphorylation regulates a switch between transcriptional and splicing condensates, Nature, vol.572, issue.7770, pp.543-548, 2019.

Z. Zhou and X. D. Fu, Regulation of splicing by SR proteins and SR protein-specific kinases, Chromosoma, vol.122, issue.3, pp.191-207, 2013.

J. Tassan, M. Jaquenoud, A. M. Fry, S. Frutiger, G. J. Hughes et al., In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein, EMBO J, vol.14, issue.22, pp.5608-5625, 1995.

R. P. Fisher, CDK7: A kinase at the core of transcription and in the crosshairs of cancer drug discovery, Transcription, vol.10, issue.2, pp.47-56

C. C. Ebmeier, B. Erickson, B. L. Allen, M. A. Allen, H. Kim et al., Human TFIIH Kinase CDK7 Regulates Transcription-Associated Chromatin Modifications, vol.20, pp.1173-1186, 2017.

S. Larochelle, R. Amat, K. Glover-cutter, M. Sansó, C. Zhang et al.,

P. Fisher, Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II, Nat Struct Mol Biol, vol.19, issue.11, pp.1108-1123, 2012.

H. Lu, R. P. Fisher, P. Bailey, and A. J. Levine, The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro, Mol Cell Biol, vol.17, issue.10, pp.5923-5957, 1997.

J. Je?ek, D. G. Smethurst, D. C. Stieg, Z. A. Kiss, S. E. Hanley et al., The Story of a Non-Cycling Cyclin, vol.8, p.3, 2019.

C. B. Fant and D. J. Taatjes, Regulatory functions of the Mediator kinases CDK8 and CDK19, vol.10, pp.76-90, 2019.

M. Chen, J. Jiang, Z. Yang, S. Altilia, B. Hu et al., CDK8/19 Mediator kinases potentiate induction of transcription by NF?B, Proc Natl Acad Sci, vol.114, issue.38, pp.10208-10213, 2017.

M. D. Galbraith, Z. Andrysik, A. Pandey, M. Hoh, E. A. Bonner et al., CDK8 Kinase Activity Promotes, vol.21, pp.1495-1506, 2017.

H. S. Mancebo, G. Lee, J. Flygare, J. Tomassini, P. Luu et al.,

P. Flores, TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro, Genes Dev, vol.11, issue.20, pp.2633-2677, 1997.

J. Peng, Y. Zhu, J. T. Milton, and D. H. Price, Identification of multiple cyclin subunits of human P-TEFb, Genes Dev, vol.12, issue.5, pp.755-62, 1998.

H. Lu, D. Yu, A. S. Hansen, S. Ganguly, R. Liu et al., Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II, Nature, vol.558, issue.7709, pp.318-323, 2018.

P. K. Parua, G. T. Booth, M. Sansó, B. Benjamin, J. C. Tanny et al., A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II, Nature, vol.558, issue.7710, pp.460-464, 2018.

T. K. Ko, E. Kelly, and J. Pines, CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles, J Cell Sci, vol.114, pp.2591-603, 2001.

H. H. Chen, Y. H. Wong, A. M. Geneviere, and M. J. Fann, CDK13/CDC2L5 interacts with L-type cyclins and regulates alternative splicing, Biochem Biophys Res Commun, vol.354, issue.3, pp.735-775, 2007.

Y. Even, S. Durieux, M. L. Escande, J. C. Lozano, G. Peaucellier et al., , vol.2

, Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo, J Cell Biochem, vol.99, issue.3, pp.890-904, 2006.

C. A. Bösken, L. Farnung, C. Hintermair, M. Schachter, K. Vogel-bachmayr et al., The structure and substrate specificity of human Cdk12/Cyclin K, vol.5, p.3505, 2014.

A. L. , Greenleaf Human CDK12 and CDK13, multi-tasking CTD kinases for the new millennium, Transcription, vol.10, issue.2, pp.91-110, 2019.

Y. X. Xu and J. L. Manley, Pin1 modulates RNA polymerase II activity during the transcription cycle, Genes Dev, vol.21, issue.22, pp.2950-62, 2007.

D. F. Colgan, K. G. Murthy, W. Zhao, C. Prives, and J. L. Manley, Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites, EMBO J, vol.17, issue.4, 1998.

J. H. Trembley, P. Loyer, D. Hu, T. Li, J. Grenet et al., Cyclin dependent kinase 11 in RNA transcription and splicing, Prog Nucleic Acid Res Mol Biol, vol.77, pp.263-88, 2004.

B. A. Bunnell, L. S. Heath, D. E. Adams, J. M. Lahti, and V. J. Kidd, Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle, Proc Natl Acad Sci, vol.87, issue.19, pp.7467-71, 1990.

S. Cornelis, Y. Bruynooghe, G. Denecker, S. Van-huffel, S. Tinton et al., Identification and characterization of a novel cell cycle-regulated internal ribosome entry site, Mol Cell, vol.5, issue.4, pp.597-605, 2000.

J. M. Lahti, J. Xiang, L. S. Heath, D. Campana, and V. J. Kidd, PITSLRE protein kinase activity is associated with apoptosis, Mol Cell Biol, vol.15, issue.1, pp.1-11, 1995.

R. Beyaert, V. J. Kidd, S. Cornelis, M. Van-de-craen, G. Denecker et al.,

W. Vandenabeele and . Fiers, Cleavage of PITSLRE kinases by ICE/CASP-1 and CPP32/CASP-3 during apoptosis induced by tumor necrosis factor, J Biol Chem, vol.272, issue.18, pp.11694-11701, 1997.

D. Tang, R. Gururajan, and V. J. Kidd, Phosphorylation of PITSLRE p110 isoforms accompanies their processing by caspases during Fas-mediated cell death, J Biol Chem, vol.273, issue.26, pp.16601-16608, 1998.

J. Shi, J. W. Hershey, and M. A. Nelson, Phosphorylation of the eukaryotic initiation factor 3f by cyclindependent kinase 11 during apoptosis, FEBS Lett, vol.583, issue.6, pp.971-978, 2009.

N. F. Dos-santos-paparidis and F. Canduri, The Emerging Picture of CDK11: Genetic, Functional and Medicinal Aspects, Curr Med Chem, vol.25, issue.8, pp.880-888, 2018.

J. D. Berke, V. Sgambato, P. P. Zhu, B. Lavoie, M. Vincent et al., Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA polymerase II-associated cyclin, Neuron, vol.32, issue.2, pp.277-87, 2001.

L. Yang, N. Li, C. Wang, Y. Yu, L. Yuan et al., Cyclin L2, a novel RNA polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells, J Biol Chem, vol.279, issue.12, pp.11639-11687, 2004.

K. De-graaf, P. Hekerman, O. Spelten, A. Herrmann, L. C. Packman et al.,

. Becker, Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain: phosphorylation by DYRK1A and colocalization with splicing factors, J Biol Chem, vol.279, issue.6, pp.4612-4636, 2004.

S. Zhang, M. Cai, S. Zhang, S. Xu, S. Chen et al., Interaction of p58(PITSLRE), a G2/Mspecific protein kinase, with cyclin D3, J Biol Chem, vol.277, issue.38, pp.35314-35336, 2002.

J. H. Trembley, D. Hu, L. C. Hsu, C. Y. Yeung, C. Slaughter et al., PITSLREp110 protein kinases associate with transcription complexes and affect their activity, J Biol Chem, vol.277, issue.4, pp.2589-96, 2002.

J. H. Trembley, D. Hu, C. A. Slaughter, J. M. Lahti, and V. J. Kidd, Casein kinase 2 interacts with cyclindependent kinase 11 (CDK11) in vivo and phosphorylates both the RNA polymerase II carboxyl-terminal domain and CDK11 in vitro, J Biol Chem, vol.278, issue.4, pp.2265-70, 2003.

N. A. Sachs and R. R. Vaillancourt, Cyclin-dependent kinase 11(p110) activity in the absence of CK2, Biochim Biophys Acta, vol.1624, issue.1-3, pp.98-108, 2003.

M. E. Cabrejos, C. C. Allende, and E. Maldonado, Effects of phosphorylation by protein kinase CK2 on the human basal components of the RNA polymerase II transcription machinery, J Cell Biochem, vol.93, issue.1, pp.2-10, 2004.

V. Pak, T. T. Eifler, S. Jäger, N. J. Krogan, K. Fujinaga et al., CDK11 in TREX/THOC Regulates HIV mRNA 3' End Processing, vol.18, pp.560-70, 2015.

S. T. Valente, G. M. Gilmartin, C. Mott, B. Falkard, and S. P. Goff, Inhibition of HIV-1 replication by eIF3f, Proc Natl Acad Sci, vol.106, issue.11, pp.4071-4079, 2009.

D. C. Cary, K. Fujinaga, and B. M. Peterlin, Molecular mechanisms of HIV latency, J Clin Invest, vol.126, issue.2, 2016.

G. B. Kyei, X. Cheng, R. Ramani, and L. Ratner, Cyclin L2 is a critical HIV dependency factor in macrophages that controls SAMHD1 abundance, Cell Host Microbe, vol.17, issue.1, pp.98-106, 2015.

J. K. Kisaka, L. Ratner, and G. B. Kyei, The dual specificity kinase DYRK1A modulates the levels of cyclin L2 to control HIV replication in macrophages, J Virol In press, 2020.

P. Loyer, J. H. Trembley, J. M. Lahti, and V. J. Kidd, The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo, J Cell Sci, vol.111, pp.1495-506, 1998.

D. Hu, A. Mayeda, J. H. Trembley, J. M. Lahti, and V. J. Kidd, CDK11 complexes promote pre-mRNA splicing, J Biol Chem, vol.278, issue.10, pp.8623-8632, 2003.

J. H. Trembley, E. Tatsumi, P. Sakashita, C. A. Loyer, H. Slaughter et al.,

. Mayeda, Activation of pre-mRNA splicing by human RNPS1 is regulated by CK2 phosphorylation, Mol Cell Biol, vol.25, issue.4, pp.1446-57, 2005.

A. Herrmann, K. Fleischer, H. Czaikowska, G. Müller-newen, and W. Becker, Characterization of cyclin L1 as an immobile component of the splicing factor compartment, FASEB J, vol.120, pp.2424-2458, 2007.

L. A. Dickinson, A. J. Edgar, J. Ehley, and J. M. Gottesfeld, Cyclin L is an RS domain protein involved in pre-mRNA splicing, J Biol Chem, vol.277, issue.28, pp.25465-73, 2002.

T. Li, A. Inoue, J. M. Lahti, and V. J. Kidd, Failure to proliferate and mitotic arrest of CDK11(p110/p58)-null mutant mice at the blastocyst stage of embryonic cell development, Mol Cell Biol, vol.24, issue.8, pp.3188-97, 2004.

C. Petretti, M. Savoian, E. Montembault, D. M. Glover, C. Prigent et al., The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation, EMBO Rep, vol.7, issue.4, pp.418-442, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00966639

D. Hu, M. Valentine, V. J. Kidd, and J. M. Lahti, CDK11(p58) is required for the maintenance of sister chromatid cohesion, J Cell Sci, vol.120, pp.2424-2458, 2007.

H. Yokoyama, O. J. Gruss, S. Rybina, M. Caudron, M. Schelder et al., Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate, J Cell Biol, vol.180, issue.5, pp.867-75, 2008.

N. Franck, E. Montembault, P. Romé, A. Pascal, J. Y. Cremet et al., CDK11(p58) is required for centriole duplication and Plk4 recruitment to mitotic centrosomes, PLoS One, vol.6, issue.1, p.14600, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00561837

M. J. Renshaw, T. C. Panagiotou, B. D. Lavoie, and A. Wilde, CDK11 p58 -cyclin L1? regulates abscission site assembly, J Biol Chem, vol.294, issue.49, pp.18639-18649, 2019.

S. An, O. S. Kwon, J. Yu, and S. K. Jang, A cyclin-dependent kinase, CDK11/p58, represses cap-dependent translation during mitosis, Cell Mol Life Sci In press, 2020.

E. W. Wilker, M. A. Van-vugt, S. A. Artim, P. H. Huang, C. P. Petersen et al., 14-3-3sigma controls mitotic translation to facilitate cytokinesis, Nature, vol.446, issue.7133, pp.329-361, 2007.

M. Barna, A. Pusic, O. Zollo, M. Costa, N. Kondrashov et al., Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency, Nature, vol.456, issue.7224, pp.971-976, 2008.

R. Redon, T. Hussenet, G. Bour, K. Caulee, B. Jost et al., Amplicon Mapping and Transcriptional Analysis Pinpoint Cyclin L as a Candidate Oncogene in Head and Neck Cancer, Cancer Res, vol.62, issue.21, pp.6211-6217, 2002.

D. Muller, R. Millon, S. Theobald, T. Hussenet, B. Wasylyk et al., Cyclin L1 (CCNL1) gene alterations in human head and neck squamous cell carcinoma, Br J Cancer, vol.94, issue.7, pp.1041-1045, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188070

C. Sticht, C. Hofele, C. Flechtenmacher, F. X. Bosch, K. Freier et al., Amplification of Cyclin L1 is associated with lymph node metastases in head and neck squamous cell carcinoma (HNSCC), Br J Cancer, vol.92, issue.4, pp.770-774, 2005.

M. L. Ooft, J. Van-ipenburg, and R. J. Van-de-loo,

R. Koljenovic, J. Baatenburg-de-jong, S. M. Hardillo, and . Willems, Differences in cancer gene copy number alterations between Epstein-Barr virus-positive and Epstein-Barr virus-negative nasopharyngeal carcinoma, Head Neck, vol.40, issue.9, pp.1986-1998, 2018.

S. Mitra, D. Mazumder, P. S. Basu, R. K. Mondal, A. Roy et al., Amplification of CyclinL1 in uterine cervical carcinoma has prognostic implications, Molecular Carcinogenesis, vol.49, issue.11, pp.935-943, 2010.

H. Li, T. Wang, X. Li, D. Huang, Q. Chen et al., Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells, Chinese Medical Journal, vol.120, issue.10, pp.905-909, 2007.

H. Li, D. Huang, T. Deng, L. Zhou, X. Wang et al., Overexpression of Cyclin L2 Inhibits Growth and Enhances Chemosensitivity in Human Gastric Cancer Cells, Asian Pacific Journal of Cancer Prevention, vol.13, pp.1425-1430, 2012.

J. P. Mackeigan, L. O. Murphy, and J. Blenis, Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance, Nat Cell Biol, vol.7, issue.6, pp.591-600, 2005.

K. Hu, J. H. Law, A. Fotovati, and S. E. Dunn, Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells, Breast cancer research : BCR, vol.14, issue.1, p.22, 2012.

R. E. Tiedemann, Y. X. Zhu, J. Schmidt, C. X. Shi, C. Sereduk et al., Identification of Molecular Vulnerabilities in Human Multiple Myeloma Cells by RNA Interference Lethality Screening of the Druggable Genome, Cancer Res, vol.72, issue.3, pp.757-768, 2012.

Z. Duan, J. Zhang, E. Choy, D. Harmon, X. Liu et al., Systematic Kinome shRNA Screening Identifies CDK11 (PITSLRE) Kinase Expression Is Critical for Osteosarcoma Cell Growth and Proliferation, Clinical Cancer Research, vol.18, issue.17, pp.4580-4588, 2012.

Y. Feng, S. Sassi, J. K. Shen, X. Yang, Y. Gao et al.,

Z. Hornicek and . Duan, Targeting Cdk11 in osteosarcoma cells using the CRISPR-cas9 system, Journal of Orthopaedic Research, vol.33, issue.2, pp.199-207, 2014.

Y. Liao, S. Sassi, S. Halvorsen, Y. Feng, J. Shen et al.,

Z. Hornicek and . Duan, Androgen receptor is a potential novel prognostic marker and oncogenic target in osteosarcoma with dependence on CDK11, Sci Rep, vol.7, p.43941, 2017.

Y. Feng, Y. Liao, J. Zhang, J. Shen, Z. Shao et al., Transcriptional activation of CBFbeta by CDK11(p110) is necessary to promote osteosarcoma cell proliferation, Cell Commun Signal, vol.17, issue.1, p.125, 2019.

Y. Chi, S. Huang, L. Wang, R. Zhou, X. Xiao et al., CDK11p58 inhibits ERalphapositive breast cancer invasion by targeting integrin beta3 via the repression of ERalpha signaling, BMC Cancer, vol.14, p.577, 2014.

B. F. Dessauvagie, C. Thomas, C. Robinson, F. A. Frost, J. Harvey et al., Validation of mitosis counting by automated phosphohistone H3 (PHH3) digital image analysis in a breast carcinoma tissue microarray, Pathology, vol.47, issue.4, pp.329-363, 2015.

Y. Chi, S. Huang, H. Peng, M. Liu, J. Zhao et al., Critical role of CDK11(p58) in human breast cancer growth and angiogenesis, BMC Cancer, vol.15, p.701, 2015.

Y. Hao, X. Kong, Y. Ruan, H. Gan, H. Chen et al., CDK11p46 and RPS8 associate with each other and suppress translation in a synergistic manner, Biochem Biophys Res Commun, vol.407, issue.1, pp.169-74, 2011.

X. Yun, Y. Wu, L. Yao, H. Zong, Y. Hong et al., CDK11(p58) protein kinase activity is associated with Bcl-2 down-regulation in pro-apoptosis pathway, Mol Cell Biochem, vol.304, pp.1-2

B. T. Kren, G. M. Unger, M. J. Abedin, R. I. Vogel, C. M. Henzler et al., Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference target for triple negative breast cancer therapy, Breast Cancer Research, vol.17, issue.1, p.19, 2015.

Y. Zhou, C. Han, D. Li, Z. Yu, F. Li et al., Cyclin-dependent kinase 11(p110) (CDK11(p110)) is crucial for human breast cancer cell proliferation and growth, Sci Rep, vol.5, p.10433, 2015.

B. Jia, E. Choy, G. Cote, D. Harmon, S. Ye et al., Cyclin-dependent kinase 11 (CDK11) is crucial in the growth of liposarcoma cells, Cancer Lett, vol.342, pp.104-112, 2014.

X. Liu, Y. Gao, J. Shen, W. Yang, E. Choy et al., Cyclin-Dependent Kinase 11 (CDK11) Is Required for Ovarian Cancer Cell Growth In Vitro and In Vivo, and Its Inhibition Causes Apoptosis and Sensitizes Cells to Paclitaxel, Mol Cancer Ther, vol.15, issue.7, pp.1691-701, 2016.

R. L. Ahmed, D. P. Shaughnessy, T. P. Knutson, R. I. Vogel, K. Ahmed et al., , p.11

, Loss Induces Cell Cycle Dysfunction and Death of BRAF and NRAS Melanoma Cells, Pharmaceuticals (Basel), vol.12, issue.2, 2019.

A. Lin, C. J. Giuliano, A. Palladino, K. M. John, C. Abramowicz et al.,

A. R. Liu, Z. C. Chait, C. Galluzzo, J. M. Tucker, and . Sheltzer, Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials, Sci Transl Med, vol.11, issue.509, p.8412, 2019.