T. Mcinerney and D. Terzopoulos, Deformable models in medical image analysis: A survey, Medical image analysis, vol.1, issue.2, pp.91-108, 1996.

J. S. Duncan and A. N. , Medical image analysis: Progress over two decades and the challenges ahead, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.1, pp.85-106, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00615100

D. L. Pham, C. Y. Xu, and P. Jl, Current methods in medical image segmentation 1, Annual review of biomedical engineering, vol.2, issue.1, pp.315-337, 2000.

C. Kirbas and F. Quek, A review of vessel extraction techniques and algorithms, ACM Computing Surveys (CSUR), 2004.

D. Lesage, A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes, Medical image analysis, vol.13, issue.6, pp.819-845, 2009.

A. F. Frangi, W. J. Niessen, and K. L. Vincken, Multiscale vessel enhancement filtering, pp.130-137, 1998.

L. M. Lorigo, CURVES: curve evolution for vessel segmentation, Medical Image Analysis, vol.5, issue.3, pp.195-206, 2001.

D. Nain, A. Yezzi, and G. Turk, Vessel Segmentation Using a Shape Driven Flow, Lecture Notes in Computer Science, vol.3216, pp.51-59, 2004.

C. Li, Minimization of region-scalable fitting energy for image segmentation, IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, vol.17, issue.10, pp.1940-1949, 2008.

J. Brieva, E. Gonzalez, and F. Gonzalez, A level set method for vessel segmentation in coronary angiography, Conference: International Conference of the IEEE, pp.6348-6351, 2005.

K. Sum and P. Cheung, Vessel extraction under non-uniform illumination: a level set approach, IEEE transactions on bio-medical engineering, vol.55, issue.1, pp.358-360, 2008.

Z. Fan, J. Lu, and C. Wei, A hierarchical image matting model for blood vessel segmentation in fundus images, IEEE Transactions on Image Processing, vol.28, issue.5, pp.2367-2377, 2019.

J. Staal, Ridge-based vessel segmentation in color images of the retina, IEEE Transactions on Medial Imaging, vol.23, issue.4, pp.501-509, 2004.

D. Marín, A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features, IEEE Transactions on Medical Imaging, vol.30, issue.1, pp.146-158, 2011.

M. Sayed and S. Saha, A Semi-supervised Approach to Segment Retinal Blood Vessels in Color Fundus Photographs, Conference on Artificial Intelligence in Medicine in Europe, pp.347-351, 2019.

. Alom, . Hasan, and . Yakopcic, Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

J. Zhuang and . Laddernet, Multi-path networks based on U-Net for medical image segmentation

H. Fu and S. Lin, DeepVessel: Retinal Vessel Segmentation via Deep Learning and Conditional Random Field, MICCAI, pp.132-139, 2016.

M. Schaap, Bayesian tracking of elongated structures in 3D images, Biennial International Conference on Information Processing in Medical Imaging, pp.74-85, 2007.

H. Li and Y. A. , Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surfaces and centerlines, IEEE Transactions on Medical Imaging, vol.26, issue.9, pp.1213-1223, 2007.

F. Benmansour and L. D. Cohen, Tubular structure segmentation based on minimal path method and anisotropic enhancement, International Journal of Computer Vision, vol.92, issue.2, pp.192-210, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00662296

O. Wink, W. J. Niessen, and V. Wa, Multiscale vessel tracking, IEEE Transactions on Medical Imaging, vol.23, issue.1, pp.130-133, 2004.

S. R. Aylward and B. E. , Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction, IEEE transactions on medical imaging, vol.21, issue.2, pp.61-75, 2002.

A. Gülsün, M. Tek, and H. , Robust vessel tree modeling. International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.602-611, 2008.

C. T. Metz, Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach, Medical physics, vol.36, issue.12, pp.5568-5579, 2009.

A. Sr and E. Bullitt, Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction, IEEE transactions on medical imaging, vol.21, issue.2, pp.61-75, 2002.

H. Li, A. Yezzi, and L. D. Cohen, 3D multi-branch tubular surface and centerline extraction with 4D iterative key points. International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.1042-1050, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00701395

L. D. Cohen and T. Deschamps, Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging, Computer methods in biomechanics and biomedical engineering, issue.10, pp.289-305, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00691873

V. Kaul, A. Yezzi, and Y. C. Tsai, Detecting curves with unknown endpoints and arbitrary topology using minimal paths. IEEE transactions on pattern analysis and machine intelligence, vol.34, pp.1952-1965, 2012.

Y. Chen, Curve-like structure extraction using minimal path propagation with backtracking, IEEE Transactions on Image Processing, vol.25, issue.2, pp.988-1003, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281519

Y. Chen, Centerline constrained minimal path propagation for vessel extraction, IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014.

C. Da, J. Zhang, and L. D. Cohen, Minimal paths for tubular structure segmentation with coherence penalty and adaptive anisotropy, IEEE Transactions on Image Processing, vol.28, issue.4, pp.1271-1284, 2018.

E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische mathematic, vol.1, issue.1, pp.269-271, 1959.

M. Garcia, Coronary vein tracking from MSCT using a minimum cost path approach, IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00526972

M. Niemeijer, Comparative study of retinal vessel segmentation methods on a new publicly available database, International Society for Optics and Photonics, 2004.

A. Hoover, V. Kouznetsova, and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response

, IEEE Transactions on Medical imaging, vol.19, issue.3, pp.203-210, 2000.

G. Y. Yang, Characterization of 3-D coronary tree motion from MSCT angiography, IEEE Transactions on Information Technology in Biomedicine, vol.14, issue.1, pp.101-106, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00450268

K. Hameeteman, Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading, Medical Image Analysis, vol.15, issue.4, pp.477-488, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00614145

. Nvidia-cudatm-programming-guide,

M. Accelerating, M. Using, and . Files,

S. Chaudhuri, Detection of blood vessels in retinal images using two-dimensional matched filters, IEEE Transactions on Medical Imaging, vol.8, issue.3, pp.263-269, 1989.

B. Zhang, Retinal vessel extraction by matched filter with first-order derivative of Gaussian, Computers in biology and medicine, vol.40, issue.4, pp.438-445, 2010.

L. Espona, Retinal vessel tree segmentation using a deformable contour model, ICPR 2008. 19th International Conference on. IEEE, 2008.

M. A. Mendonca and C. A. , Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction, IEEE Transactions on Medical Imaging, vol.25, issue.9, pp.1200-1213, 2006.

M. Vlachos and D. E. , Multi-scale retinal vessel segmentation using line tracking, Computerized Medical Imaging and Graphics, vol.34, issue.3, pp.213-227, 2010.

G. Hamarneh and P. Jassi, VascuSynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis, Comput Med imaging Graph, vol.34, pp.605-616, 2010.