M. K. Heun and P. E. Brockway, Meeting 2030 primary energy and economic growth goals: Mission impossible?, Appl. Energy, vol.251, pp.1-24, 2019.

, IEA. World Energy Statistics and Balance, vol.IEA, p.2020, 2020.

J. Randolph and G. M. Masters, Energy Sources and Sustainability, Energy for Sustainability: Foundations for Technology, Planning, and Policy, pp.25-57, 2018.

M. Frigione, M. Lettieri, and A. Sarcinella, Phase change materials for energy efficiency in buildings and their use in mortars, Materials, vol.12, 1260.

, IRENA. Global Energy Transformation: A Roadmap to, vol.IRENA, p.1168, 2018.

G. Alva, Y. Lin, and G. Fang, An overview of thermal energy storage systems, Energy, vol.144, pp.341-378, 2018.

E. M. Languri and G. Cunningham, Thermal Energy Storage Systems, Advances in Sustainable Energy

A. Vasel, , pp.169-176, 2019.

L. F. Cabeza, A. Castell, C. Barreneche, A. De-gracia, and A. I. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renew. Sustain. Energy Rev, vol.15, pp.1675-1695, 2011.

Á. Pardiñas, M. J. Alonso, R. Diz, K. H. Kvalsvik, and J. Fernández-seara, State-of-the-art for the use of phase-change materials in tanks coupled with heat pumps, vol.140, pp.28-41, 2017.

S. Rashidi, H. Shamsabadi, J. A. Esfahani, and S. Harmand, A review on potentials of coupling PCM storage modules to heat pipes and heat pumps, J. Therm. Anal. Calorim, vol.140, pp.1655-1713, 2019.

K. Pielichowska and K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci, vol.65, pp.67-123, 2014.

M. H. Abokersh, M. O. El-baz, M. El-morsi, and O. Sharaf, Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS), Int. J. Energy Res, vol.42, pp.329-357, 2017.

M. Mofijur, T. M. Mahlia, A. S. Silitonga, H. C. Ong, M. Silakhori et al., Phase change materials (PCM) for solar energy usages and storage: An overview, vol.12, p.3167, 2019.

P. Forcescue, G. Swinerd, and J. Stark, Spacecraft Systems Engineering, 2011.

L. F. Cabeza, Thermal Energy Storage. Compr. Renew. Energy, vol.3, pp.211-253, 2012.

I. Sarbu and C. Sebarchievici, Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications, 2017.

L. Navarro, A. De-gracia, S. Colclough, M. Browne, S. J. Mccormack et al., Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems, Renew. Energy, vol.88, pp.526-547, 2016.

F. Souayfane, F. Fardoun, and P. H. Biwole, Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build, vol.129, pp.396-431, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01313573

K. Du, J. Calautit, Z. Wang, Y. Wu, and H. Liu, A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges, Appl. Energy, vol.220, pp.242-273, 2018.

B. Zalba, J. M. Marín, L. F. Cabeza, and H. Mehling, Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications, Appl. Therm. Eng, vol.23, pp.251-283, 2003.

C. Alkan, E. Günther, S. Hiebler, Ö. F. Ensari, and D. Kahraman, Polyethylene glycol-sugar composites as shape stabilized phase change materials for thermal energy storage, Polym. Polym. Compos, vol.33, pp.1728-1736, 2012.

Y. Jiang, E. Ding, and G. Li, Study on transition characteristics of PEG/CDA solid-solid phase change materials, vol.43, pp.117-122, 2001.

G. Q. Qi, J. Yang, R. Y. Bao, Z. Y. Liu, W. Yang et al., Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage, vol.88, pp.196-205, 2015.

E. Oró, A. De-gracia, A. Castell, M. M. Farid, and L. F. Cabeza, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl. Energy, vol.99, pp.513-533, 2012.

S. Sundararajan, A. B. Samui, and P. S. Kulkarni, Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies, J. Mater. Chem. A, vol.5, pp.18379-18396, 2017.

S. Rashidi, M. Samimifar, M. H. Doranehgard, and L. K. Li, Organic Phase Change Materials, In Reference Module in Materials Science and Materials Engineering, 2020.

M. J. Zarei, H. Bazai, M. Sharifpur, O. Mahian, and B. Shabani, The effects of fin parameters on the solidification of PCMs in a fin-enhanced thermal energy storage system, Energies 2020, vol.13

L. Fan and J. M. Khodadadi, Thermal conductivity enhancement of phase change materials for thermal energy storage: A review, Renew. Sustain. Energy Rev, vol.15, pp.24-46, 2011.

F. Bruno, M. Belusko, M. Liu, and N. H. Tay, Using solid-liquid phase change materials (PCMs) in thermal energy storage systems, Adv. Therm. Energy Storage Syst, vol.9, pp.201-246, 2015.

N. Sharifi, T. L. Bergman, and A. Faghri, Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces, Int. J. Heat Mass Transf, vol.54, pp.4182-4192, 2011.

M. Firoozzadeh, Experimental and Analytical Study on Enhancing Efficiency of the Photovoltaic Panels Using Polyethylene-Glycol 600 (PEG 600) as a Phase Change Material, Iran. J. Energy Environ, vol.600, pp.23-32, 2019.

M. Firoozzadeh, A. H. Shiravi, and M. Shafiee, Using polyethylene glycol as a phase change material and fins for the cooling of photovoltaic cells of the crystalline type, Amirkabir J. Mech. Eng, vol.50, pp.1-3, 2018.

M. Eslami and M. A. Bahrami, Sensible and latent thermal energy storage with constructal fins, Int. J. Hydrogen Energy, vol.42, pp.17681-17691, 2017.

M. Baygi, S. R. Sadrameli, and S. M. , Thermal management of photovoltaic solar cells using polyethylene glycol 1000 (PEG1000) as a phase change material, Therm. Sci. Eng. Prog, vol.5, pp.405-411, 2018.

H. L. Zhang, J. Baeyens, J. Degrève, G. Cáceres, R. Segal et al., Latent heat storage with tubular-encapsulated phase change materials (PCMs), vol.76, pp.66-72, 2014.

R. Velraj, R. V. Seeniraj, B. Hafner, C. Faber, and K. Schwarzer, Heat transfer enhancement in a latent heat storage system, Sol. Energy, vol.65, pp.171-180, 1999.

M. Jurkowska and I. Szczygie?, Review on properties of microencapsulated phase change materials slurries (mPCMS), Appl. Therm. Eng, vol.98, pp.365-373, 2016.

Z. Liu, Z. Yu, T. Yang, D. Qin, S. Li et al., A review on macro-encapsulated phase change material for building envelope applications, Build. Environ, vol.144, pp.281-294, 2018.

N. Navarrete, D. La-zara, A. Goulas, D. Valdesueiro, L. Hernández et al., Improved thermal energy storage of nanoencapsulated phase change materials by atomic layer deposition, Sol. Energy Mater. Sol. Cells, vol.206, 2020.

K. E. Perepelkin, Polymeric Fibre Composites, Basic Types, Principles. Fibre Chem, vol.38, pp.26-40, 2006.

W. Wang, X. Yang, Y. Fang, and J. Ding, Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials, Appl. Energy, vol.86, pp.170-174, 2009.

B. Tang, C. Wu, M. Qiu, X. Zhang, S. Zhang et al., SiO 2 -Al 2 O 3 hybrid form-stable phase change materials with enhanced thermal conductivity, Mater. Chem. Phys, vol.144, pp.162-167, 2014.

X. Chen, X. Li, X. Xia, C. Sun, and R. Liu, Thermal Performance of a PCM-Based Thermal, vol.12, 2019.

J. M. Mahdi and E. C. Nsofor, Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination, Appl. Energy, vol.191, pp.22-34, 2017.

A. Marani and M. L. Nehdi, Integrating phase change materials in construction materials: Critical review, Constr. Build. Mater, vol.217, pp.36-49, 2019.

J. Wang, M. Yang, Y. Lu, Z. Jin, L. Tan et al., Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials, Nano Energy, vol.19, pp.78-87, 2016.

T. Nomura, N. Okinaka, and T. Akiyama, Impregnation of porous material with phase change material for thermal energy storage, Mater. Chem. Phys, vol.115, pp.846-850, 2009.

S. Grandi, A. Magistris, P. Mustarelli, E. Quartarone, C. Tomasi et al., Synthesis and characterization of SiO 2 -PEG hybrid materials, J. Non. Cryst. Solids, vol.352, pp.273-280, 2006.

C. Oh, C. Do-ki, J. Young-chang, and S. G. Oh, Preparation of PEG-grafted silica particles using emulsion method, Mater. Lett, vol.59, pp.929-933, 2005.

H. Yang, L. Feng, C. Wang, W. Zhao, and X. Li, Confinement effect of SiO 2 framework on phase change of PEG in shape-stabilized PEG/SiO 2 composites, Eur. Polym. J, vol.48, pp.803-810, 2012.

O. V. Yatskovskaya, O. N. Baklanova, T. I. Gulyaeva, V. A. Drozdov, and V. A. Gorbunov, The effect of polyethylene glycol molecular weight on characteristics of the porous structure of silica materials, Prot. Met. Phys. Chem. Surf, vol.49, pp.216-221, 2013.

L. Feng, J. Zheng, H. Yang, Y. Guo, W. Li et al., Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials, Sol. Energy Mater. Sol. Cells, vol.95, pp.644-650, 2011.

L. Feng, W. Zhao, J. Zheng, S. Frisco, P. Song et al., The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41), Sol. Energy Mater. Sol. Cells, vol.95, pp.3550-3556, 2011.

C. Wang, L. Feng, W. Li, J. Zheng, W. Tian et al., Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials, Sol. Energy Mater. Sol. Cells, vol.105, pp.21-26, 2012.

X. Chen, H. Gao, M. Yang, W. Dong, X. Huang et al., Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting, Nano Energy, vol.49, pp.86-94, 2018.

M. A. Kibria, M. R. Anisur, M. H. Mahfuz, R. Saidur, and I. H. Metselaar, A review on thermophysical properties of nanoparticle dispersed phase change materials, Energy Convers. Manag, vol.95, pp.69-89, 2015.

M. He, L. Yang, W. Lin, J. Chen, X. Mao et al., Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage, J. Energy Storage, vol.25, 2019.

L. Colla, L. Fedele, S. Mancin, L. Danza, and O. Manca, Nano-PCMs for enhanced energy storage and passive cooling applications, Appl. Therm. Eng, vol.110, pp.584-589, 2017.

G. Ferrer, C. Barreneche, A. Solé, J. E. Juliá, and L. F. Cabeza, Recent patents on nano-enhanced materials for use in thermal energy storage (TES), Recent Pat. Nanotechnol, vol.11, pp.101-108, 2017.

K. Y. Leong, M. R. Abdul-rahman, and B. A. Gurunathan, Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges, COST Action CA15119 NanoUptake, vol.21, p.24, 2019.

K. Yapici, N. K. Cakmak, N. Ilhan, and Y. Uludag, Rheological characterization of polyethylene glycol based TiO 2 nanofluids, Korea-Aust. Rheol. J, vol.26, pp.355-363, 2014.

H. Zhang, Y. Yuan, Q. Sun, and X. Cao, Enhanced thermal energy storage performance of polyethylene glycol by using interfacial interaction of copper-based metal oxide, Adv. Eng. Mater, 2017.

M. Zafarani-moattar and R. Majdan-cegincara, Stability, rheological, magnetorheological and volumetric characterizations of polymer based magnetic nanofluids, Colloid Polym. Sci, vol.291, 1977.

S. Song, F. Qiu, W. Zhu, Y. Guo, Y. Zhang et al., Polyethylene glycol/halloysite@Ag nanocomposite PCM for thermal energy storage: Simultaneously high latent heat and enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, vol.193, pp.237-245, 2019.

Y. Deng, J. Li, T. Qian, W. Guan, Y. Li et al., Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage, Chem. Eng. J, vol.295, pp.427-435, 2016.

M. A. Marcos, D. Cabaleiro, S. Hamze, L. Fedele, S. Bobbo et al., NePCM based on silver dispersions in poly(ethylene glycol) as a stable solution for thermal storage, Nanomaterials, vol.10, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02425815

M. Popa, T. Pradell, D. Crespo, and J. M. Calderón-moreno, Stable silver colloidal dispersions using short chain polyethylene glycol, Colloids Surf. A Physicochem. Eng. Asp, vol.303, pp.184-190, 2007.

B. Tang, M. Qiu, and S. Zhang, Thermal conductivity enhancement of PEG/SiO 2 composite PCM by in situ Cu doping, Sol. Energy Mater. Sol. Cells, vol.105, pp.242-248, 2012.

B. Tang, Y. Wang, M. Qiu, and S. Zhang, A full-band sunlight-driven carbon nanotube/PEG/SiO 2 composites for solar energy storage, Sol. Energy Mater. Sol. Cells, vol.123, pp.7-12, 2014.

M. A. Marcos, N. E. Podolsky, D. Cabaleiro, L. Lugo, A. O. Zakharov et al., MWCNT in PEG-400 nanofluids for thermal applications: A chemical, physical and thermal approach, J. Mol. Liq, vol.294, pp.1-13, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02310258

C. Wang, K. Chen, J. Huang, Z. Cai, Z. Hu et al., Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives, vol.180, pp.873-880, 2019.

M. A. Marcos, D. Cabaleiro, M. J. Guimarey, M. J. Comuñas, L. Fedele et al., PEG 400-based phase change materials nano-enhanced with functionalized graphene nanoplatelets, Nanomaterials, vol.8, p.16, 2018.

G. Q. Qi, C. L. Liang, R. Y. Bao, Z. Y. Liu, W. Yang et al., Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide, Sol. Energy Mater. Sol. Cells, vol.123, pp.171-177, 2014.

L. He, H. Wang, H. Zhu, Y. Gu, X. Li et al., Thermal properties of PEG/graphene nanoplatelets (GnPs) Composite phase change materials with enhanced thermal conductivity and photo-thermal performance, Appl. Sci, 2018.

D. Cabaleiro, F. Agresti, S. Barison, M. A. Marcos, J. I. Prado et al., Development of paraffinic phase change material nanoemulsions for thermal energy storage and transport in low-temperature applications, Appl. Therm. Eng, vol.159, 2019.

F. Agresti, L. Fedele, S. Rossi, D. Cabaleiro, S. Bobbo et al., Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications, Sol. Energy Mater Sol. Cells, vol.194, pp.268-275, 2019.

S. Ranjbar, H. Masoumi, R. H. Khoshkhoo, and M. Mirfendereski, Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes, J. Therm. Anal. Calorim, vol.140, pp.2505-2518, 2019.

A. N. Keshteli and M. Sheikholeslami, Nanoparticle enhanced PCM applications for intensification of thermal performance in building: A review, J. Mol. Liq, vol.274, pp.516-533, 2019.

P. Estellé, D. Cabaleiro, G. ?y?a, L. Lugo, and S. M. Murshed, Current trends in surface tension and wetting behavior of nanofluids, Renew. Sustain. Energy Rev, vol.94, pp.931-944, 2018.

J. P. Vallejo, G. ?y?a, J. Fernández-seara, and L. Lugo, Influence of six carbon-based nanomaterials on the rheological properties of nanofluids, Nanomaterials, vol.9, p.146, 2019.

F. Charreteur, F. Jaouen, S. Ruggeri, and J. P. Dodelet, Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction, Electrochim. Acta, vol.53, pp.2925-2938, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00800244

G. ?y?a, J. Fal, and P. Estellé, The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids, Diam. Relat. Mater, vol.74, pp.81-89, 2017.

L. A. Vereshchagin and G. V. Sakovich, Structure of detonation nanodiamonds, Mendeleev Commun, vol.11, pp.39-41, 2001.

D. Cabaleiro, C. Gracia-fernández, and L. Lugo, Solid + liquid) phase equilibria and heat capacity of (diphenyl ether + biphenyl) mixtures used as thermal energy storage materials, J. Chem. Thermodyn, vol.74, pp.43-50, 2014.

S. Halelfadl, P. Estellé, B. Aladag, N. Doner, and T. Maré, Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature, Int. J. Therm. Sci, vol.71, pp.111-117, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00821792

A. Pierre, C. Lanos, and P. Estellé, Extension of spread-slump formulae for yield stress evaluation, Appl. Rheol, vol.23, pp.1-9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904857

. Astm-international, ASTM D7896-14 Standard Test Method for Thermal Conductivity, Thermal Diffusivity and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method, 2014.

A. Banisharif, M. Aghajani, S. Van-vaerenbergh, P. Estellé, and A. Rashidi, Thermophysical properties of water ethylene glycol (WEG) mixture-based Fe 3 O 4 nanofluids at low concentration and temperature, J. Mol. Liq, vol.302, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02493762

S. Zeroual, P. Estellé, D. Cabaleiro, B. Vigolo, M. Emo et al., Ethylene glycol based silver nanoparticles synthesized by polyol process: Characterization and thermophysical profile, J. Mol. Liq, vol.310, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02558309

E. W. Lemmon, M. L. Huber, and M. O. Mclinden, Version 9.0. Physical and Chemical Properties, Reference Fluid Thermodynamic and Transport Properties (REFPROP), vol.23, 2010.

G. ?y?a, J. P. Vallejo, J. Fal, and L. Lugo, Nanodiamonds-Ethylene glycol nanofluids: Experimental investigation of fundamental physical properties, Int. J. Heat Mass Transf, vol.121, pp.1201-1213, 2018.

M. Wanic, D. Cabaleiro, S. Hamze, J. Fal, P. Estellé et al., Surface tension of ethylene glycol-based nanofluids containing various types of nitrides: An experimental study, J. Therm. Anal. Calorim, vol.139, pp.799-806, 2020.

R. Gómez-villarejo, T. Aguilar, S. Hamze, P. Estellé, and J. Navas, Experimental analysis of water-based nanofluids using boron nitride nanotubes with improved thermal properties, J. Mol. Liq, vol.277, pp.93-103, 2019.

G. ?y?a, J. Fal, and P. Estellé, Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN-EG) nanofluids with various size of particles, Int. J. Heat Mass Transf, vol.113, pp.1189-1199, 2017.

F. Wang, P. Zhang, Y. Mou, M. Kang, M. Liu et al., Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage, Polym. Test, vol.63, pp.494-504, 2017.

K. Pielichowski and K. Flejtuch, Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials, Polym. Adv. Technol, vol.13, pp.690-696, 2002.

W. C. Lai, C. Y. Hsueh, and C. W. Chang, Nanostructured polymers with embedded self-assembled networks: Reversibly tunable phase behaviors and physical properties, Soft Matter, vol.15, pp.6427-6435, 2019.

Q. Meng and J. Hu, A poly(ethylene glycol)-based smart phase change material, Sol. Energy Mater. Sol. Cells, vol.92, pp.1260-1268, 2008.

A. R. Meyer, C. R. Bender, D. M. Santos, F. I. Ziembowicz, C. P. Frizzo et al., Effect of slight structural changes on the gelation properties of N-phenylstearamide supramolecular gels, Soft Matter, vol.14, pp.6716-6727, 2018.

A. B. Pereiro, M. J. Pastoriza-gallego, K. Shimizu, I. M. Marrucho, J. N. Lopes et al., On the formation of a third, nanostructured domain in ionic liquids, J. Phys. Chem. B, vol.117, pp.10826-10833, 2013.

C. Hermida-merino, M. Pérez-rodríguez, M. M. Piñeiro, and M. J. Pastoriza-gallego, Evidence of viscoplastic behavior of exfoliated graphite nanofluids, Soft Matter, vol.12, pp.2264-2275, 2016.

D. Cabaleiro, M. J. Pastoriza-gallego, C. Gracia-fernández, M. M. Piñeiro, and L. Lugo, Rheological and volumetric properties of TiO 2 -ethylene glycol nanofluids, Nanoscale Res. Lett, 2013.

H. Vogel, The law of the relation between the viscosity of liquids and the temperature, Phys. Z, vol.22, pp.645-646, 1921.

G. S. Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc, vol.8, pp.339-355, 1925.

G. Tammann and W. Hesse, The dependence of viscosity upon the temperature of supercooled liquids, Z. Anorg. Allg. Chem, vol.156, pp.245-257, 1926.

M. Sillick and C. M. Gregson, Viscous fragility of concentrated maltopolymer/sucrose mixtures, Carbohydr. Polym, vol.78, pp.879-887, 2009.

W. Afzal, A. H. Mohammadi, and D. Richon, Volumetric properties of mono-, di-, tri-, and polyethylene glycol aqueous solutions from (273.15 to 363.15) K: Experimental measurements and correlations, J. Chem. Eng. Data, vol.54, pp.1254-1261, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509614

S. Trivedi and S. Pandey, Densities of 1-Butyl-3-methylimidazolium hexafluorophosphate poly(ethylene glycol) in the temperature range (283.15 to 363.15) K, J. Chem. Eng. Data, vol.56, pp.2168-2174, 2011.

Y. Niu, F. Gao, R. Zhu, S. Sun, and X. Wei, Solubility of dilute SO 2 in mixtures of N,N -dimethylformamide + polyethylene glycol 400 and the density and viscosity of the mixtures, J. Chem. Eng. Data, vol.58, pp.639-647, 2013.

E. Sani, J. P. Vallejo, D. Cabaleiro, and L. Lugo, Functionalized graphene nanoplatelet-nanofluids for solar thermal collectors, Sol. Energy Mater. Sol. Cells, vol.185, pp.205-209, 2018.

D. Cabaleiro, L. Colla, S. Barison, L. Lugo, L. Fedele et al., Heat transfer capability of (ethylene glycol + water)-based nanofluids containing graphene nanoplatelets: Design and thermophysical profile, Nanoscale Res. Lett, vol.12, 2017.

A. K. Nayak, R. K. Singh, and P. P. Kulkarni, Thermal expansion characteristics of Al 2 O 3 nanofluids: More to understand than understood, Appl. Phys. Lett, vol.94, p.94102, 2009.

D. Fu, L. Du, and H. Wang, Experiment and model for the surface tension of MEA-PEG400 and DEA-PEG400 aqueous solutions, J. Chem. Thermodyn, vol.69, pp.132-136, 2014.