S. Ni?eti?, N. Djilali, A. Papadopoulos, and J. J. Rodrigues, Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management, J. Clean. Prod, vol.231, pp.565-591, 2019.

S. B. Riffat and X. Ma, Thermoelectrics: A review of present and potential applications, Appl. Therm. Eng, vol.23, pp.913-935, 2003.

S. Park, H. Kang, and H. J. Yoon, Structure-thermopower relationships in molecular thermoelectrics, J. Mater. Chem. A, vol.7, pp.14419-14446, 2019.

H. Wang and C. Yu, Organic Thermoelectrics: Materials Preparation, Performance Optimization, and Device Integration, vol.3, pp.53-80, 2019.

A. Hajatzadeh-pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian et al., An updated review on application of nanofluids in heat exchangers for saving energy, Energy Convers. Manag, 2019.

M. M. Tawfik, Experimental studies of nanofluid thermal conductivity enhancement and applications: A review, Renew. Sustain. Energy Rev, vol.75, pp.1239-1253, 2017.

S. U. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, International Mechanical Engineering Congress and Exhibition, pp.99-105, 1995.

Z. Haddad, C. Abid, H. F. Oztop, and A. Mataoui, A review on how the researchers prepare their nanofluids, Int. J. Therm. Sci, vol.76, pp.168-189, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01459361

G. Puliti, S. Paolucci, and M. Sen, Nanofluids and Their Properties. Appl. Mech. Rev, vol.64, 2011.

M. Bahiraei and S. Heshmatian, Graphene family nanofluids: A critical review and future research directions, Energy Convers. Manag, vol.196, pp.1222-1256, 2019.

E. Bellos and C. Tzivanidis, Investigation of a nanofluid-based concentrating thermal photovoltaic with a parabolic reflector, Energy Convers. Manag, vol.180, pp.171-182, 2019.

P. Yen and J. Wang, Power generation and electric charge density with temperature effect of alumina nanofluids using dimensional analysis, Energy Convers. Manag, vol.186, pp.546-555, 2019.

S. Nazari, H. Safarzadeh, and M. Bahiraei, Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid, Renew. Energy, vol.135, pp.729-744, 2019.

A. Karimipour, S. A. Bagherzadeh, M. Goodarzi, A. A. Alnaqi, M. Bahiraei et al., Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN, Int. J. Heat Mass Transf, vol.127, pp.1169-1179, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02127855

M. R. Safaei, R. Ranjbarzadeh, A. Hajizadeh, M. Bahiraei, M. Afrand et al., Effects of cobalt ferrite coated with silica nanocomposite on the thermal conductivity of an antifreeze: New nanofluid for refrigeration condensers, Int. J. Refrig, vol.102, pp.86-95, 2019.

H. Sardarabadi, S. Zeinali-heris, A. Ahmadpour, and M. Passandideh-fard, Experimental investigation of a novel type of two-phase closed thermosyphon filled with functionalized carbon nanotubes/water nanofluids for electronic cooling application, Energy Convers. Manag, vol.188, pp.321-332, 2019.

C. Qi, M. Liu, and J. Tang, Influence of triangle tube structure with twisted tape on the thermo-hydraulic performance of nanofluids in heat-exchange system based on thermal and exergy efficiency, Energy Convers. Manag, vol.192, pp.243-268, 2019.

M. Bahiraei and A. A. Ahmadi, Thermohydraulic performance analysis of a spiral heat exchanger operated with water-alumina nanofluid: Effects of geometry and adding nanoparticles, Energy Convers. Manag, vol.170, pp.62-72, 2018.

S. M. Murshed and P. Estelle, A state of the art review on viscosity of nanofluids, Renew. Sustain. Energy Rev, vol.76, pp.1134-1152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01500498

M. Afrand, M. Hemmat-esfe, E. Abedini, and H. Teimouri, Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data, Phys. E Low Dimens. Syst. Nanostruct, vol.87, pp.242-247, 2017.

M. Hemmat-esfe and M. H. Hajmohammad, Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM, J. Mol. Liq, vol.238, pp.545-552, 2017.

C. H. Li and G. P. Peterson, The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids, J. Appl. Phys, vol.101, p.44312, 2007.

M. R. Esfahani, E. M. Languri, and M. R. Nunna, Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid, Int. Commun. Heat Mass Transf, vol.76, pp.308-315, 2016.

R. M. Sarviya and V. Fuskele, Review on Thermal Conductivity of Nanofluids. Mater. Today-Proc. 2017, vol.4, pp.4022-4031

N. N. Esfahani, D. Toghraie, and M. Afrand, A new correlation for predicting the thermal conductivity of ZnO-Ag (50%-50%)/water hybrid nanofluid: An experimental study, Powder Technol, vol.323, pp.367-373, 2018.

G. Xia, H. Jiang, R. Liu, and Y. Zhai, Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids, Int. J. Therm. Sci, vol.84, pp.118-124, 2014.

P. Estellé, S. Halelfadl, and T. Maré, Lignin as dispersant for water-based carbon nanotubes nanofluids: Impact on viscosity and thermal conductivity, Int. Commun. Heat Mass Transf, vol.57, pp.8-12, 2014.

A. Yasinskiy, J. Navas, T. Aguilar, R. Alcántara, J. J. Gallardo et al., Dramatically enhanced thermal properties for TiO 2 -based nanofluids for being used as heat transfer fluids in concentrating solar power plants, Renew. Energy, vol.119, pp.809-819, 2018.

T. Yiamsawas, A. S. Dalkilic, O. Mahian, and S. Wongwises, Measurement and Correlation of the Viscosity of Water-Based Al 2 O 3 and TiO 2 Nanofluids in High Temperatures and Comparisons with Literature Reports, J. Dispers. Sci. Technol, vol.34, pp.1697-1703, 2013.

S. A. Angayarkanni and J. Philip, Review on thermal properties of nanofluids: Recent developments, Adv. Colloid Interface Sci, vol.225, pp.146-176, 2015.

S. Lee, S. U. Choi, .. Li, S. Eastman, and J. A. , Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transf, vol.121, pp.280-289, 1999.

O. Mahian, A. Kianifar, S. Z. Heris, and S. Wongwises, Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study, Int. J. Heat Mass Transf, vol.99, pp.792-804, 2016.

R. Gómez-villarejo, E. I. Martín, J. Navas, A. Sánchez-coronilla, T. Aguilar et al., Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights, Appl. Energy, vol.194, pp.19-29, 2017.

J. Navas, A. Sánchez-coronilla, E. I. Martín, M. Teruel, J. J. Gallardo et al., On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: An experimental and molecular dynamics study, Nano Energy, vol.27, pp.213-224, 2016.

H. Seong, G. Kim, J. Jeon, H. Jeong, J. Noh et al., Experimental Study on Characteristics of Grinded Graphene Nanofluids with Surfactants. Materials, vol.11, 2018.

A. Naddaf and S. Zeinali-heris, Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes, Int. Commun. Heat Mass Transf, vol.95, pp.116-122, 2018.

R. Kamatchi and K. G. Kannan, An aqua based reduced graphene oxide nanofluids for heat transfer applications: Synthesis, characterization, stability analysis, and thermophysical properties, Int. J. Renew. Energy Res, vol.8, pp.313-319, 2018.

B. Bahaya, D. W. Johnson, and C. C. Yavuzturk, On the Effect of Graphene Nanoplatelets on Water-Graphene Nanofluid Thermal Conductivity, Viscosity, and Heat Transfer Under Laminar External Flow Conditions, J. Heat Transf, vol.140, 2018.

A. A. Hussien, M. Z. Abdullah, N. M. Yusop, M. A. Al-nimr, M. A. Atieh et al., Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube, Int. J. Heat Mass Transf, vol.115, pp.1121-1131, 2017.

A. D. Manasrah, U. A. Al-mubaiyedh, T. Laui, R. Ben-mansour, M. J. Al-marri et al., Heat transfer enhancement of nanofluids using iron nanoparticles decorated carbon nanotubes, Appl. Therm. Eng, vol.107, pp.1008-1018, 2016.

E. Ettefaghi, B. Ghobadian, A. Rashidi, G. Najafi, M. H. Khoshtaghaza et al., Preparation and investigation of the heat transfer properties of a novel nanofluid based on graphene quantum dots, Energy Convers. Manag, vol.153, pp.215-223, 2017.

K. S. Novoselov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, pp.666-669, 2004.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene, Nano Lett, vol.8, pp.902-907, 2008.

S. Gupta, S. Manoj-siva, V. Krishnan, S. Sreeprasad, T. S. Singh et al., Thermal conductivity enhancement of nanofluids containing graphene nanosheets, J. Appl. Phys, vol.110, p.84302, 2011.

Y. Gao, H. Wang, A. P. Sasmito, and A. S. Mujumdar, Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids, Int. J. Heat Mass Transf, vol.123, pp.97-109, 2018.

J. P. Vallejo, J. Pérez-tavernier, D. Cabaleiro, J. Fernández-seara, and L. Lugo, Potential heat transfer enhancement of functionalized graphene nanoplatelet dispersions in a propylene glycol-water mixture. Thermophysical profile, J. Chem. Thermodyn, vol.123, pp.174-184, 2018.

Z. Sun, S. Pöller, X. Huang, D. Guschin, C. Taetz et al., High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity, Carbon, vol.64, pp.288-294, 2013.

A. Amiri, G. Ahmadi, M. Shanbedi, M. Etemadi, M. N. Zubir et al., Heat transfer enhancement of water-based highly crumpled few-layer graphene nanofluids, RSC Adv, vol.6, pp.105508-105527, 2016.

A. Amiri, M. Shanbedi, A. R. Rafieerad, M. M. Rashidi, T. Zaharinie et al., Functionalization and exfoliation of graphite into mono layer graphene for improved heat dissipation, J. Taiwan Inst. Chem. Eng, vol.71, pp.480-493, 2017.

O. A. Alawi, N. A. Sidik, S. N. Kazi, and G. Najafi, Graphene nanoplatelets and few-layer graphene studies in thermo-physical properties and particle characterization, J. Therm. Anal. Calorim, vol.135, pp.1081-1093, 2019.

O. A. Alawi, A. R. Mallah, S. N. Kazi, N. A. Sidik, and G. Najafi, Thermophysical properties and stability of carbon nanostructures and metallic oxides nanofluids, J. Therm. Anal. Calorim, vol.135, pp.1545-1562, 2019.

N. Berrada, S. Hamze, A. Desforges, J. Ghanbaja, J. Gleize et al., Surface tension of functionalized MWCNT-based nanofluids in water and commercial propylene-glycol mixture, J. Mol. Liquids, vol.293, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02265963

A. O. Borode, N. A. Ahmed, and P. A. Olubambi, Surfactant-aided dispersion of carbon nanomaterials in aqueous solution, Phys. Fluids, vol.31, p.71301, 2019.

L. Guardia, M. J. Fernández-merino, J. I. Paredes, P. Solís-fernández, S. Villar-rodil et al., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants, Carbon, vol.49, pp.1653-1662, 2011.

A. K. Rasheed, M. Khalid, W. Rashmi, T. C. Gupta, and A. Chan, Graphene based nanofluids and nanolubricants-Review of recent developments, Renew. Sustain. Energy Rev, vol.63, pp.346-362, 2016.

N. Keklikcioglu-cakmak, The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids, J. Therm. Anal. Calorim, vol.2020, pp.1895-1902

M. Mehrali, E. Sadeghinezhad, S. Tahan-latibari, M. Mehrali, H. Togun et al., Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids, J. Mater. Sci, vol.49, pp.7156-7171, 2014.

S. Qamar, S. Yasin, N. Ramzan, T. Iqbal, and M. N. Akhtar, Preparation of stable dispersion of graphene using copolymers: Dispersity and aromaticity analysis. Soft Mater, vol.17, pp.190-202, 2019.

A. Akbari, S. A. Alavi-fazel, S. Maghsoodi, and A. Shahbazi-kootenaei, Thermo-physical and stability properties of raw and functionalization of graphene nanoplatelets-based aqueous nanofluids, J. Dispers. Sci. Technol, vol.40, pp.17-24, 2019.

W. S. Sarsam, A. Amiri, S. N. Kazi, and A. Badarudin, Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids, Energy Convers. Manag, vol.116, pp.101-111, 2016.

M. Azizi, M. Hosseini, S. Zafarnak, M. Shanbedi, and A. Amiri, Experimental Analysis of Thermal Performance in a Two-Phase Closed Thermosiphon Using Graphene/Water Nanofluid, Ind. Eng. Chem. Res, vol.52, pp.10015-10021, 2013.

Y. Xu, Y. Xue, H. Qi, and W. Cai, Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids, Int. J. Heat Mass Transf, vol.157, 2020.

S. S. Shazali, A. Amiri, M. N. Mohd-zubir, S. Rozali, M. Z. Zabri et al., Investigation of the thermophysical properties and stability performance of non-covalently functionalized graphene nanoplatelets with Pluronic P-123 in different solvents, Mater. Chem. Phys, vol.206, pp.94-102, 2018.

. E37-committee, Test Method for Evaluating the Resistance to Thermal Transmission of Materials by the Guarded Heat Flow Meter Technique, 2019.

D. Cabaleiro, J. Nimo, M. J. Pastoriza-gallego, M. M. Piñeiro, J. L. Legido et al., Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO 2 nanofluids, J. Chem. Thermodyn, vol.83, pp.67-76, 2015.

A. Banisharif, M. Aghajani, S. Van-vaerenbergh, P. Estellé, and A. Rashidi, Thermophysical properties of water ethylene glycol (WEG) mixture-based Fe 3 O 4 nanofluids at low concentration and temperature, J. Mol, vol.2020, 112606.
URL : https://hal.archives-ouvertes.fr/hal-02493762

S. Zeroual, P. Estellé, D. Cabaleiro, B. Vigolo, M. Emo et al., Ethylene glycol based silver nanoparticles synthesized by polyol process: Characterization and thermophysical profile, J. Mol, vol.2020, 113229.
URL : https://hal.archives-ouvertes.fr/hal-02558309

J. Sengers and J. Watson, Improved International Formulations for the Viscosity and Thermal-Conductivity of Water Substance, J. Phys. Chem. Ref. Data, vol.15, pp.1291-1314, 1986.

W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc, vol.80, p.1339, 1958.

M. I. Kairi, S. Dayou, N. I. Kairi, S. Bakar, B. Vigolo et al., Toward high production of graphene flakes-A review on recent developments in their synthesis methods and scalability, J. Mater. Chem. A, vol.6, pp.15010-15026, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02079446

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol, vol.3, pp.563-568, 2008.

O. V. Ershova, T. C. Lillestolen, and E. Bichoutskaia, Study of polycyclic aromatic hydrocarbons adsorbed on graphene using density functional theory with empirical dispersion correction, Phys. Chem. Chem. Phys, vol.12, pp.6483-6491, 2010.

B. Schmaltz, T. Weil, and K. Müllen, Polyphenylene-Based Materials: Control of the Electronic Function by Molecular and Supramolecular Complexity, Adv. Mater, vol.21, pp.1067-1078, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01721185

A. Bianco, H. Cheng, T. Enoki, Y. Gogotsi, R. H. Hurt et al., All in the graphene family-A recommended nomenclature for two-dimensional carbon materials, Carbon, vol.65, pp.1-6, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02106170

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

F. Tuinstra and J. Koenig, Raman Spectrum of Graphite, J. Chem. Phys, vol.53, pp.1126-1130, 1970.

M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev, vol.110, pp.132-145, 2010.

H. Navas, A. Desforges, J. Ghanbaja, B. Vigolo, and P. Estellé, Long-term stability of graphene based nanofluids, vol.6, pp.529-533, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01660593

E. V. Timofeeva, A. N. Gavrilov, J. M. Mccloskey, Y. V. Tolmachev, S. Sprunt et al., Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory, Phys. Rev. E, vol.76, p.61203, 2007.

J. P. Vallejo, E. Álvarez-regueiro, D. Cabaleiro, J. Fernández-seara, J. Fernández et al., Functionalized graphene nanoplatelet nanofluids based on a commercial industrial antifreeze for the thermal performance enhancement of wind turbines, Appl. Therm. Eng, vol.152, pp.113-125, 2019.

D. Cabaleiro, L. Colla, S. Barison, L. Lugo, L. Fedele et al., Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile, Nanoscale Res. Lett, vol.12, pp.1-11, 2017.

R. Agromayor, D. Cabaleiro, Á. Pardiñas, J. Vallejo, J. Fernández-seara et al., Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids, Materials, vol.9, p.455, 2016.

M. D. Rodriguez-laguna, A. Castro-alvarez, M. Sledzinska, J. Maire, F. Costanzo et al., Mechanisms behind the enhancement of thermal properties of graphene nanofluids, Nanoscale, vol.10, pp.15402-15409, 2018.

C. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys, vol.81, pp.6692-6699, 1997.

P. Estellé, S. Halelfadl, and T. Maré, Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview, J. Therm. Eng, 2015.

K. Chu, W. Li, and F. Tang, Flatness-dependent thermal conductivity of graphene-based composites, Phys. Lett. A, vol.377, pp.910-914, 2013.

W. Zhong, M. Zhang, B. Ai, and D. Zheng, Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study, Appl. Phys. Lett, 2011.

D. Alexeev, J. Chen, J. H. Walther, K. P. Giapis, P. Angelikopoulos et al., Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects, Nano Lett, vol.15, pp.5744-5749, 2015.

C. Selvam, D. M. Lal, and S. Harish, Thermal conductivity enhancement of ethylene glycol and water with graphene nanoplatelets, Thermochim. Acta, vol.642, pp.32-38, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI