G. A. Cornwall, New insights into epididymal biology and function, Hum. Reprod. Update, vol.15, p.213, 2009.

J. L. Dacheux and F. Dacheux, New insights into epididymal function in relation to sperm maturation, Reproduction, p.27, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01129807

R. Jones, Plasma membrane structure and remodelling during sperm maturation in the epididymis, J. Reprod. Fertil. Suppl, vol.53, p.73, 1998.

C. Kirchhoff, I. Pera, P. Derr, C. H. Yeung, and T. Cooper, The molecular biology of the sperm surface. Post-testicular membrane remodelling, Adv. Exp. Med. Biol, vol.424, p.221, 1997.

K. Cleland, The structure and function of the Epididymis. 1. The histology of the Rat Epididymis, Australian Journal of Zoology, vol.5, p.223, 1957.

B. Robaire and L. Hermo, Efferent ducts, epididymis, and Vas deferens: structure, functions, and their regulation, The Physiology of Reproduction, pp.1000-1080, 1988.

C. Kirchhoff, Gene expression in the epididymis, Int. Rev. Cytol, vol.188, p.133, 1999.

T. T. Turner, D. Bomgardner, J. P. Jacobs, and Q. A. Nguyen, Association of segmentation of the epididymal interstitium with segmented tubule function in rats and mice, Reproduction, vol.125, p.871, 2003.

S. A. Jelinsky, T. T. Turner, H. J. Bang, J. N. Finger, M. K. Solarz et al.,

G. S. Brown, D. S. Kopf, and . Johnston, The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides, Biol. Reprod, p.561, 2007.

K. M. Jervis and B. Robaire, Dynamic changes in gene expression along the rat epididymis, Biol. Reprod, vol.65, p.696, 2001.

B. Guyonnet, F. Dacheux, J. Dacheux, and J. Gatti, The epididymal transcriptome and proteome provide some insights into new epididymal regulations, J. Androl, vol.32, p.651, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01129565

M. G. Gervasi and P. E. Visconti, Molecular changes and signaling events occurring in spermatozoa during epididymal maturation, 0204.

H. Yuan, A. Liu, L. Zhang, H. Zhou, Y. Wang et al.,

Z. Zhang and . Chen, Proteomic profiling of regionalized proteins in rat epididymis indicates consistency between specialized distribution and protein functions, J. Proteome Res, vol.5, p.299, 2006.

S. Hu, A. Liang, G. Yao, X. Li, M. Zou et al., The dynamic metabolomic changes throughout mouse epididymal lumen fluid potentially contribute to sperm maturation, Andrology, vol.6, p.247, 2018.

N. Kim, H. Nakamura, H. Masaki, K. Kumasawa, K. Hirano et al., Effect of lipid metabolism on male fertility, Biochem. Biophys. Res. Commun, p.686, 2017.

G. Haidl and C. Opper, Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation, Hum. Reprod, vol.12, p.2720, 1997.

S. Pyttel, A. Nimptsch, J. Böttger, K. Zschörnig, U. Jakop et al., Changes of murine sperm phospholipid composition during epididymal maturation determined by MALDI-TOF mass spectrometry, Theriogenology, vol.82, p.396, 2014.

H. Sato, Y. Taketomi, Y. Isogai, Y. Miki, K. Yamamoto et al.,

Y. Arata, T. Ishikawa, T. Ishii, H. Kobayashi, K. Nakanishi et al., Group III secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice, J. Clin. Invest, p.1400, 2010.

H. Rejraji, B. Sion, G. Prensier, M. Carreras, C. Motta et al., Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation, Biol. Reprod, vol.74, p.1104, 2006.

M. Lagarrigue, R. Lavigne, B. Guevel, E. Com, P. Chaurand et al., Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry: A Promising Technique for Reproductive Research, Biology of Reproduction, vol.86, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00877851

P. Chaurand, S. Fouchecourt, B. B. Dague, B. J. Xu, M. L. Reyzer et al., Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry, Proteomics, vol.3, p.2221, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02678239

D. J. Ryan, D. Nei, B. M. Prentice, K. L. Rose, R. M. Caprioli et al., Protein identification in imaging mass spectrometry through spatially targeted liquid microextractions, Rapid Commun. Mass Spectrom, vol.32, p.442, 2018.

A. C. Crecelius, U. S. Schubert, and F. Eggeling, MALDI mass spectrometric imaging meets "omics": recent advances in the fruitful marriage, Analyst, p.5806, 2015.

A. Palmer, P. Phapale, I. Chernyavsky, R. Lavigne, D. Fay et al., FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry, Nat. Methods, vol.14, p.57, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01467553

A. C. Crecelius, D. S. Cornett, R. M. Caprioli, B. Williams, B. M. Dawant et al., Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry, J. Am. Soc. Mass. Spectrom, p.1093, 2005.

M. Andersson, M. R. Groseclose, A. Y. Deutch, and R. M. Caprioli, Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction, Nature Methods, vol.5, p.101, 2008.

E. H. Seeley and R. M. Caprioli, 3D imaging by mass spectrometry: a new frontier, Anal. Chem, vol.84, p.2105, 2012.

A. D. Palmer and T. Alexandrov, Serial 3D imaging mass spectrometry at its tipping point, Anal. Chem, vol.87, p.4055, 2015.

J. Oetjen, K. Veselkov, J. Watrous, J. S. Mckenzie, M. Becker et al., Benchmark datasets for 3D MALDI-and DESI-imaging mass spectrometry, 1920.

E. E. Jones, C. Quiason, S. Dale, and S. K. Shahidi-latham,

, MALDI FTICR Imaging Approach for the 3D Reconstruction of a Mouse Lung, J. Am. Soc. Mass Spectrom, vol.28, p.1709, 2017.

T. Alexandrov and J. H. Kobarg, Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering, Bioinformatics, 2011.

O. Klein, K. Strohschein, G. Nebrich, J. Oetjen, D. Trede et al., MALDI imaging mass spectrometry: discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures, Proteomics, vol.14, p.2249, 2014.

S. O. Deininger, M. P. Ebert, A. Futterer, M. Gerhard, and C. Rocken, MALDI Imaging Combined with Hierarchical Clustering as a New Tool for the Interpretation of Complex Human Cancers, J. Proteome Res, 2008.

D. Trede, S. Schiffler, M. Becker, S. Wirtz, K. Steinhorst et al.,

A. , Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: three-dimensional spatial segmentation of mouse kidney, Anal. Chem, vol.84, p.6079, 2012.

S. Rauser, C. Marquardt, B. Balluff, S. O. Deininger, C. Albers et al., Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry, J. Proteome Res, p.1854, 2010.

J. M. Lotz, F. Hoffmann, J. Lotz, S. Heldmann, D. Trede et al., Integration of 3D multimodal imaging data of a head and neck cancer and advanced feature recognition, Biochim Biophys Acta Proteins Proteom, p.946, 2017.

D. S. Cornett, M. L. Reyzer, P. Chaurand, and R. M. Caprioli, MALDI imaging mass spectrometry: molecular snapshots of biochemical systems, Nat. Methods, 2007.

W. De-grava-kempinas and G. R. Klinefelter,

B. Fuchs, U. Jakop, F. Göritz, R. Hermes, T. Hildebrandt et al., MALDI-TOF "fingerprint" phospholipid mass spectra allow the differentiation between ruminantia and feloideae spermatozoa, Theriogenology, p.568, 2009.

J. V. Busik, G. E. Reid, and T. A. Lydic, Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry, Methods Mol. Biol, vol.579, p.33, 2009.

B. Fuchs, K. Muller, U. Paasch, and J. Schiller, Lysophospholipids: potential markers of diseases and infertility? Mini Rev Med Chem, p.74, 2012.

N. L. Cross, Sphingomyelin modulates capacitation of human sperm in vitro, Biol. Reprod, vol.63, p.1129, 2000.

H. Masaki, N. Kim, H. Nakamura, K. Kumasawa, E. Kamata et al.,

. Kimura, Long-chain fatty acid triglyceride (TG) metabolism disorder impairs male fertility: a study using adipose triglyceride lipase deficient mice, Mol. Hum. Reprod, vol.23, p.452, 2017.

J. G. Alvarez, B. T. Storey, M. L. Hemling, and R. L. Grob, High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa, J. Lipid Res, p.1073, 1990.

M. Attar, M. Kates, M. Khalil, D. Carrier, P. T. Wong et al., A Fourier-transform infrared study of the interaction between germ-cell specific sulfogalactosylglycerolipid and dimyristoylglycerophosphocholine, Chem. Phys. Lipids, vol.106, p.101, 2000.

P. Lopalco, R. Vitale, Y. S. Cho, P. Totaro, A. Corcelli et al., Alteration of Cholesterol Sulfate/Seminolipid Ratio in Semen Lipid Profile of Men With Oligoasthenozoospermia, Front. Physiol, vol.10, p.1344, 2019.

N. Tanphaichitr, K. Kongmanas, K. F. Faull, J. Whitelegge, F. Compostella et al., Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction, Progress in Lipid Research, vol.72, p.18, 2018.

N. Goto-inoue, T. Hayasaka, N. Zaima, and M. Setou, The specific localization of seminolipid molecular species on mouse testis during testicular maturation revealed by imaging mass spectrometry, Glycobiology, vol.19, p.950, 2009.

J. Leopold, Y. Popkova, K. M. Engel, and J. Schiller, Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of, Lipids. Biomolecules, vol.8, p.173, 2018.