G. Whitesides, J. Mathias, and C. Seto, Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science, vol.254, p.1312, 1991.

M. Caplan, P. Moore, S. Zhang, R. Kamm, and D. Lauffenburger, Self-Assembly of a ?-Sheet Protein Governed by Relief of Electrostatic Repulsion Relative to van der Waals Attraction, Biomacromolecules, vol.1, p.627, 2000.

M. Ma, Y. Kuang, Y. Gao, Y. Zhang, P. Gao et al., Aromatic?Aromatic Interactions Induce the Self-Assembly of Pentapeptidic Derivatives in Water To Form Nanofibers and Supramolecular Hydrogels, J. Am. Chem. Soc, p.2719, 2010.

S. H. Chong and S. Ham, Impact of chemical heterogeneity on protein self-assembly in water, Proc. Natl. Acad. Sci. U.S.A, vol.109, p.7636, 2012.

M. Mateescu, P. Ispas-szabo, and E. Assaad, Controlled Drug Delivery?The Role of Self-Assembling Multi-Task Excipients, 2015.

J. Yoo, D. Irvine, D. Discher, and S. Mitragotri, Bio-inspired, bioengineered and biomimetic drug delivery carriers, Nat. Rev. Drug Discovery, vol.10, p.521, 2011.

E. Pouget, N. Fay, E. Dujardin, N. Jamin, P. Berthault et al., Elucidation of the self-assembly pathway of lanreotide octapeptide into ?-sheet nanotubes: role of two stable intermediates, J. Am. Chem. Soc, p.4230, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470362

E. Gazit, Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization, Chem. Soc. Rev, vol.36, p.1263, 2007.

F. Heitz, M. C. Morris, and G. Divita, Twenty years of cellpenetrating peptides: from molecular mechanisms to therapeutics, Br. J. Pharm, vol.157, p.195, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400161

H. Cui, M. Webber, and S. Stupp, Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials, Pept. Sci, vol.94, p.1, 2010.

C. Valery, M. Paternostre, B. Robert, T. G. Narayanan, .. T. Dedieu et al., Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension, Proc. Natl. Acad. Sci. U.S.A, vol.100, p.10258, 2003.

C. Vale?y, F. Artzner, and M. Paternostre, Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications, Soft Matter, vol.7, p.9583, 2011.

I. P. Hamley and . Nanotubes, Angew. Chem., Int. Ed, vol.53, p.6866, 2014.

C. Vale?y, E. Pouget, A. Pandit, J. Verbavatz, L. Bordes et al., Molecular origin of the self-assembly of Lanreotide into Nanotubes: A Mutational Approach, Biophys. J, vol.94, p.1782, 2008.

C. Tarabout, Autoassemblages Peptidiques d'analogues du Lanreótide: Controle du Diametre des Nanotubes et Autres Morphologies

J. Cintrat, M. Ligeti, B. Rousseau, F. Artzner, C. Tarabout et al., Novel Octapeptide Compounds and Therapeutic Use Thereof

W. Cornell, P. Cieplak, C. Bayly, I. Gloud, K. Merz et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, J. Am. Chem. Soc, vol.117, p.5179, 1995.

T. Rehm and C. Schmuck, Ion-pair induced self-assembly in aqueous solvents, Chem. Soc. Rev, p.3597, 2010.

A. Luzar and D. Chandler, Effect of Environment on Hydrogen Bond Dynamics in Liquid Water, Phys. Rev. Lett, vol.76, issue.928, 1996.

A. Ghoufi, F. Artzner, and P. Malfreyt, Physical Properties and Hydrogen-Bonding Network of Water-Ethanol Mixtures from Molecular Dynamics Simulations, J. Phys. Chem. B, p.793, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01260211

A. Mendes, C. Bonal, N. Morel-desrosier, J. Morel, P. Malfreyt et al., Molecular Dynamics Simulations of p-Sulfonatocalix[4]arene Complexes with Inorganic and Organic Cations in Water: A Structural and Thermodynamic Study, Principles of Inter-Amino-Acid Recognition Revealed by Binding Energies between Homogeneous Oligopeptides. ACS Cent. Sci, vol.106, issue.22, p.97, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00315503

A. Ghoufi and P. Malfreyt, Coarse Grained Simulations of the Electrolytes at the Water-Air Interface from Many Body Dissipative Particle Dynamics, J. Chem. Theory Comput, vol.8, p.787, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00786130

A. Fluitt and J. De-pablo, An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution, Biophys. J, vol.109, p.1009, 2015.

V. H. Man, P. Derreumaux, B. Ji, X. Xie, P. H. Nguyen et al., Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of A? 16?22 Dimer, J. Chem. Theory Comput, p.1440, 2019.

J. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P, J. Chem. Phys, vol.123, p.234505, 2005.

H. Zhu, A. Ghoufi, A. Szymczyk, B. Belannec, and D. Morineau, Anomalous dielectric Behavior of Nanoconfined electrolytic solutions, Phys. Rev. Lett, vol.109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00878917

R. Renou, A. Ghoufi, A. Szymczyk, H. Zhu, J. Neyt et al., Structure and dynamics of water confined in a polyamide reverseosmosis membrane: A molecular-simulation study, J. Phys. Chem. C, vol.117, p.236, 2013.

M. Ding, A. Szymczyk, and A. Ghoufi, On the structure and rejection of ions by a polyamide membrane in pressure-driven molecular dynamics simulations, vol.368, p.76, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01115960

C. Breneman, K. Wiberg, and M. J. Frisch, Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis, J. Comput. Chem, vol.11, issue.33, p.361, 1980.

U. C. Singh and P. Kollman, 35) Hirshfeld, F. Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta, vol.5, p.129, 1977.

R. Mulliken, 37) Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys, vol.23, p.508, 1955.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, vol.37, issue.785, 1988.

J. P. Perdew, K. Burke, M. Ernzerhof, G. A. Petersson, and M. A. Al-laham, A complete basis set model chemistry. II. Open-shell systems and the total energies of the firstrow atoms, Phys. Rev. Lett, vol.77, issue.3865, p.6081, 1991.

I. Todorov, W. Smith, K. Trachenko, M. Dove, . Dlpoly et al., J. Mater. Chem, p.16, 1911.

S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys, vol.81, issue.511, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, vol.31, issue.1695, pp.25423-25431, 1985.