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ABSTRACT 

Using a simple conceptual model of incised-valley evolution, we show that the 

classic sequence stratigraphic phenomenon of bayhead deltaic systems can be gener-

ated by purely autogenic progradation during the late stage of valley flooding. This 

transient “auto-advance” event occurs under conditions of constant base-level rise 

and sediment supply, and results from a strong decrease of in-valley accommodation 

as base-level rises towards the valley apex. We present a laboratory experiment to il-

lustrate the plausibility of this mechanism and apply it to the Trinity and Brazos 

rivers incised valleys (Texas, USA) as field case studies. Auto-advance can produce 

out-of-sequence regressive bayhead diastems during highstands similar to a transient 
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change in allogenic forcing. Combined with other recent studies, our findings support 

the idea that meso-scale autogenic patterns are ubiquitous in the fluvio-deltaic record, 

and need to be more extensively incorporated into reconstructions of Earth surface 

evolution and reservoir models. 

INTRODUCTION 

The rates of accommodation creation (A, controlled by sea-level and subsi-

dence) and of sediment supply (S, controlled by erosion and sediment transport) are 

considered the two primary drivers of the advance and retreat of sedimentary land-

scapes (Cross, 1988; Schlager, 1993). In simple terms, the A/S theory predicts that 

when sediment supply exceeds accommodation there is progradation (shoreline ad-

vance), and when accommodation exceeds sediment supply there is retrogradation 

(shoreline retreat). However, during periods of constant relative sea-level (RSL) rise 

and sediment supply, and with A/S<1, a retreat of the shoreline eventually occurs de-

spite the progradational conditions predicted by the A/S ratio concept (e.g., Muto and 

Steel, 1992; Muto and Steel, 2001; Muto et al., 2007). This phenomenon is termed 

"auto-retreat" and is a consequence of how sediment is partitioned within the delta as 

it evolves (Muto and Steel, 1992). Auto-retreat is one of a growing list of observa-

tions that internal feedbacks within the sediment transport system can generate large-

scale stratigraphic patterns (Kim and Paola, 2007; Hajek et al., 2010; Tomer et al., 

2011;Hajek and Straub, 2017; Trower et al., 2018). These observations call for a re-
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analysis of several sequence stratigraphic precepts that assume a deterministic rela-

tionship between external forcings and stratigraphic products. 

Here we present a simple geometric model, physical experiment, and field case 

study illustrating a significant autogenic progradation phenomenon complementary to 

auto-retreat. By analogy, we term this effect “auto-advance”. It occurs within incised 

valleys as the valley geometry modifies the A/S ratio during constant sea-level rise. 

This causes a three-stage stratigraphic product of bayhead delta progradation and an 

associated up-dip diastem. The generated facies association is similar to one putative-

ly produced by a transient allogenic increase in sediment flux or a shift in the relative 

strength of waves, tides, and rivers in distributing sediment within the incised valley 

(Zaitlin et al., 1994). 

INCISED VALLEYS 

During RSL falls, siliciclastic margins can be dissected by a suite of laterally 

adjacent incised valleys that feed lowstand deltas. These valleys can subsequently be 

filled during sea-level rise, forming estuary systems (Fig. 1; Zaitlin et al., 1994, Blum 

et al., 2013). Incised valleys and their fills are important records of landscape dynam-

ics during sea-level cycles, usually associated with retrogradational facies tracts (e.g., 

Slatt, 2013). But out-of-sequence bay-head regressive diastems (Fig. 1, Aschoff et al., 

2018) are often documented at the transition between alluvial and deltaic environ-

ments and near times of maximum flooding. 
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Bayhead deltas have first been attributed to external factors such as wave ac-

tion, punctuated sea-level rise or increases in sediment flux (Zaitlin et al., 1994; 

Thomas and Anderson, 1994; Holz, 2003; Greene et al., 2007), but they could also 

result from autogenic processes (Simms and Rodriguez, 2015). Here, we build on this 

idea and show that bayhead deltas can result from the interplay between sediment 

supply and the evolving geometry of incised-valleys during steady base-level rise to 

create an autogenic stratigraphic pattern. 

GEOMETRIC MODELING 

Consider a V-shape incised valley with a height H, a horizontal length Lv, a 

width W, a valley basal slope 𝛼, a lateral slope 𝜃 and a interfluve (or shelf) slope 𝛽 

(with 𝛽<𝛼, Fig. 2A and B). The height H is divided into h, the valley depth at the sys-

tem’s edge, and hs, the height between the system’s apex and the slope break (Fig. 2A 

and B). The sea-level height hR is the rate of sea-level rise R multiplied by the time 

step dt. 

While sea-level remains below the edge of the incised valley ( ), the 

volume in the valley V is:


.(1) 

When sea-level rises above the edge of the valley ( ), the volume changes to: 

hR < h

V =
hR

3

3αθ

hR > h
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.(2) 

The rate of accommodation creation A is then equal to dV/dt (units: L3T-1) and corre-

sponds to the volumetric space available for sediment deposition within the valley at 

each increment of sea-level rise. Consequently, we also express the rate of sediment 

supply in 3D (units: L3T-1). 

Under constant S and R, three distinct A/S stages occur during the inundation of 

the valley (Fig. 2C). During Stage 1, A increases (eq. 1) but remains smaller than S (

). This induces a progradational regime in the lower and distal part of the val-

ley (Fig. 2C) equivalent to the lowstand (wedge) systems tract of classical incised 

valley fill models (Zaitlin et al., 1994). During Stage 2 (Fig. 2C), the rate of accom-

modation creation increases and then decreases as the base-level rises above the shelf 

edge due to the change in geometry (eq. 2), but A is always larger than S. Deposition 

within the valley is thus retrogradational as in a classical transgressive systems tract 

(Zaitlin et al., 1994). During Stage 3, A becomes smaller than S and progradation re-

sumes despite the overall context of RSL rise: this is what we term auto-advance 

(Fig. 2C). By its position in the fill and its progradational character at high RSL, this 

stage is equivalent to the highstand systems tract (HST). The boundary between 

Stages 2 and 3 would thus be a maximum flooding surface (MFS). The progradation 

predicted here is short-lived with respect to the whole filling sequence as the continu-

ing sea-level rise eventually floods the system and induces marine deposition. 

This simple model suggests that under conditions of constant sea-level rise and 

sediment supply, the deltaic system filling an incised valley could undergo a period of 

V =
W

6Lv (Lv −
hR − h

β )( hR

α
−

hR − h
β )(hs + h − hR)

A < S
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progradation (auto-advance) in the late stage of valley inundation, as a consequence 

of the prismatic valley geometry. The stratigraphic signature of auto-advance is simi-

lar to the one that would result, for example, from a transient increase in sediment 

supply. In our model, we make the assumption that deposition is restricted to the val-

ley only. However, this assumption might be violated when sea-level rises above the 

break in slope and inundates the interfluves. To explore how this may limit the ap-

plicability of our model we study the evolution of a laboratory experiment on incised 

valley filling. 

PHYSICAL EXPERIMENT 

Details and video of our experiment performed at the St. Anthony Falls Labo-

ratory (University of Minnesota) are presented in the GSA Data Repository1 and 

summarized here. The setup consists of a non-erodible 2.05-m long V-shape valley 

with a slope 𝛼 of 0.06 (Figs. 2A-B and S2) inserted within a 5×5×0.6m tank. Water 

and sediment discharge are provided at constant rates using a computer-controlled 

feeder, and constant base-level rise achieved by raising a computer-controlled weir 

(Fig. S2A). We use a 50:50 mixture of quartz (white) and anthracite coal (black) 

grains to simulate the coarse and fine fractions of the sediment load, respectively. 

Base-level in the tank is set at the base of the valley outlet (“lowstand”) at the begin-

ning of the experiment. The experiment ends once the entire fan-valley system is 

flooded after a total runtime of 130 min. We extract the position of the coarse-grained 
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delta front from orthorectified images taken every minute throughout the experiment 

(Fig. 3). 

During Stage 1 a fluvial fan develops at the proximal feeder with sheet-flow-

dominated channels. Sediments not deposited in the fluvial fan are transported out-

side the incised valley and build a prograding, lowstand delta fan (Fig. S2B). During 

Stage 2 sediment largely bypasses the proximal fluvial domain and builds a back-

stepping delta confined within the valley. We thus observe a landward migration of 

the delta front shoreline (Figs. 3 and S2C). During Stage 3 the delta is still confined 

to the valley but the rate of accommodation creation decreases and eventually be-

comes smaller than the sediment supply. As a consequence, auto-advance occurs and 

the delta front progrades on the top of previous back-stepping strata (Figs. 3 and 

S2D). Overall, patterns observed over the course of this experiment replicate those 

predicted by the geometric model (Data Repository and Fig. S3). The delta does not 

prograde enough to cover the whole valley, and after this transient advance the delta 

retrogrades and the whole system is rapidly flooded (Figs. 3 and S2E). Eventually the 

sea-level floods the shelf and our model is no longer applicable as accommodation is 

no longer restricted to the incised valley. 

FIELD CASE STUDY 

To go further, we model the Quaternary Trinity River (TR) and Brazos River 

(BR) incised valleys near Houston, Texas (Fig. 4A). Both systems have roughly simi-

lar incised valley length-, width-, and depth-scales (Table S1), and experienced the 
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same sea-level and climatic history over the past several tens of thousands of years 

(Rehkemper, 1969; Rodriguez et al., 2005; Simms et al., 2006; Taha, 2007; Milliken 

et al., 2008). The BR valley exclusively contains amalgamated fluvial deposits along 

its length (Fig.4B). In contrast, within the TR valley the lithologic succession is more 

diverse with fluvial facies overlain by a distinct flooding surface, then a progradation 

bayhead delta lithofacies, then an estuarine basin mud facies, followed by a prograda-

tional bayhead delta in proximal areas of the Trinity Bay and a flood-tidal delta unit 

in the distal portions (Simms et al., 2006; Anderson et al., 2015). This succession cap-

tures an overall transgression and infilling of the valley during Holocene sea-level 

rise (Fig. 4C-D). 

We apply our geometric model to both incised valleys to see if it can capture 

these differing first-order stratigraphic patterns. We do not seek to reproduce the ex-

act pattern of deposition:  that would require a full 3D reconstruction of the incised 

valley including the nuances of the fluvial terraces within the valley (Fig. 4C), which 

is currently not available. We calculate A from Equations 1 and 2 and used published 

values for S (Table S1). 

Our geometric model captures the first-order stratigraphic patterns within both 

incised valleys. Using constraints on the model from the field, the BR valley case 

study indicates that sediment supply is always larger than accommodation, resulting 

in an incised valley filled with fluvial units only (Fig. 4E). In contrast, the TR valley 

model displays a A/S pattern that predicts the occurrence of auto-advance (Fig. 4F). 

The modeled Stage 1 (lowstand wedge deposition) is about 35-m thick and not 

recorded within the valley (as observed during our experiment). Stage 2 (retrograda-



Manuscript submitted to Geology

tion) is predicted to be up to 20-m thick and Stage 3 (auto-advance and bayhead delta 

formation) is predicted to occur after 10-15 kyrs of sea-level rise and to be about 50-

m thick. 

The major departure between our model and field observations in the TR Val-

ley is the presence of two Holocene back-stepping bayhead deltas (Fig. 4D, Anderson 

et al., 2016), rather than a single one as the model predicts. This comes from the sim-

plified geometry we use for the valley, which contains just one interfluve, comparable 

to the terrace associated with the Pleistocene Beaumont Formation. In fact, several 

bayhead deltaswithin the TRvalley have been attributed to punctuated sea-level rise, 

transient sediment shifts, and/or antecedent topographic controls on bay flooding rate 

(Thomas and Anderson, 1994; Rodriguez et al., 2005; Simms and Rodriguez, 2014). 

But the co-occurrence of bayhead delta with the tops of Deweyville alluvial terraces, 

formed during MIS 4-3 relative sea-level fall and MIS 2 lowstand within the Trinity 

incised valley, led Rodriguez et al. (2005) to propose an autogenic origin. Our model 

provides a possible mass balance mechanism behind this autogenic origin, with 

Deweyville terraces acting as interfluves. 

IMPLICATIONS 

Understanding the evolution of incised-valleys is critical in developing predic-

tive, source-to-sink sequence stratigraphic models (Simms et al., 2018; Aschoff et al., 

2018). Many incised-valley systems are filled with transgressive-regressive sediment 

wedges interpreted as a nearly complete depositional sequence responding to RSL 
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rise followed by highstand conditions (e.g. Allen and Posamentier, 1993). However, it 

is clear from our analysis and previous work (e.g., Rodriguez et al., 2005) that valley 

morphology must be taken into account if sea-level curves reconstructed from incised 

valley deposits are to be interpreted accurately. For a given basin geometry and sedi-

ment/water discharge condition, "slow" sea-level fall might produce relative wide and 

shallow incised valley with relatively minimal topographic expression whereas the 

opposite is predicted for "fast" sea-level fall (Strong and Paola, 2008). Since auto-ad-

vance is a function of in-valley accommodation, we predict that fast sea-level fluctua-

tions favor the occurrence of auto-advance by favoring rapid change in accommoda-

tion while incised valleys are being filled. This is the case for bayhead deltas formed 

with coastal plains and shelves acting as interfluves, but also within the incised valley 

itself. Slow sea-level fall is expected to minimize alluvial terrace formation within 

the incised valley, reducing the available "nucleation" sites for progradational bay-

head deltas during the subsequent sea-level rise. 

Our analysis suggests bayhead deltas and their paired flood-tidal and barrier 

complexes may as well result from autogenic events related to the interplay of ac-

commodation and sediment supply (auto-advance), as from enhanced tidal and wave 

action due to sea-level inundation (e.g., Zaitlin et al., 1994) or from increased sedi-

ment flux. Probabilistic methods could be used to assess whether the bayhead delta is 

more likely to result from one mechanism or the other (e.g., Burgess and Steel, 2017).  

Auto-advance could occur if geometric conditions are right (Data Repository and Fig. 

S1), perhaps enhanced by the existence of a barrier complex and/or by autogenic be-

haviors involving backwater dynamics during sea-level rise (Moran et al., 2017). Im-
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portantly, the pertinent parameters for development of bayhead deltas can be estimat-

ed for paleo-case studies and provide additional constraints on sequence stratigraphic 

reservoir models. 

Our finding is more evidence that geometry and mass balance interactions play 

a major role in dictating large-scale stratigraphic patterns and overall sensitivities of 

sediment transport systems. These phenomena appear ubiquitous enough to warrant 

consideration of autogenic controls on stratigraphy at the outset of any stratal analy-

sis. Deltaic auto-advance, auto-retreat, and backwater dynamics as well as fluvial 

sand-body clustering impart structure on the stratigraphic record that is, in part, de-

terministic in nature (Toby et al., 2019; Burgess et al., 2019; Straub et al., 2020). 

Without recognizing autogenic processes, this stratigraphic variability can be misin-

terpreted via inaccurate externally forced models for reservoir models and incorrect 

reconstructions of boundary conditions (i.e., climate, tectonics, and/or eustasy). 
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FIGURES 

 

Figure 1. Incised-valley fill model with bayhead diastems and out-of-sequence bay-

head progradation at the end of retrogradation (from Zaitlin et al., 1994). P: progra-

dation, R: retrogradation. 

Figure 2: A) 3D schematic and B) cross-section views of an incised valley of height H 

(with h the elevation at slope break and hs the height between the slope break and the 

valley apex), length Lv, width W, valley slope 𝛼, valley side slope 𝜃 and interfluve 
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slope 𝛽. The sea-level is hR. C) A/S ratio in an incised valley filled during constant 

sea-level rise. The shape of the curve is a function of geometry and rates (Data Repo-

sitory and Fig. S1). Three stages may appear: during Stage 1, A<S: the system pro-

grades. During Stage 2, A>S, the system retrogrades. During Stage 3, A<S, the sys-

tem progades again despite constant sea-level rise. 

Figure 3: A) General setup seen from above and position of the coarse grain delta, 

and B) trajectory of the coarse-grain delta front between 90 (dark blue) and 124 min 

(red). Colored dots correspond to the delta front position mapped on panel A. 
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Figure 4. A) Study area in Texas Gulf of Mexico coast, B) cross-section of the Brazos 

River Valley, C) and D) cross- and dip- sections of the Trinity River Valley (modified 

from Simms et al., 2006; Anderson et al., 2008) showing the possible stages defined 

from our model. Locations of the sections are indicated on panel A (red). E) and F) 

Model outputs for the Brazos and Trinity systems, respectively, with the auto-advance 

time window for the Trinity indicated. 
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