A. M. Kaplan and M. Haenlein, Siri, Siri, in my hand: Who?s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence, Business Horizons, vol.62, issue.1, pp.15-25, 2019.

B. X. Tran, G. T. Vu, G. H. Ha, Q. H. Vuong, M. M. Ho et al., Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study, Journal of Clinical Medicine, vol.8, issue.3, p.360, 2019.

T. Appenzeller, The AI revolution in science, Science, 2017.

Z. Ghahramani, Probabilistic machine learning and artificial intelligence, Nature, vol.521, issue.7553, pp.452-459, 2015.

M. I. Jordan and T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science, vol.349, issue.6245, pp.255-260, 2015.

W. S. Noble, What is a support vector machine?, Nature Biotechnology, vol.24, issue.12, pp.1565-1567, 2006.

C. M. Bishop, CDSware: CERN document server, The Institutional Repository, pp.197-200, 2006.

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.

T. Anagnostou, M. Remzi, M. Lykourinas, and B. Djavan, Artificial Neural Networks for Decision-Making in Urologic Oncology, European Urology, vol.43, issue.6, pp.596-603, 2003.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

D. Karimi, G. Samei, C. Kesch, G. Nir, and S. E. Salcudean, Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models, International Journal of Computer Assisted Radiology and Surgery, vol.13, issue.8, pp.1211-1219, 2018.

T. J. Brinker, A. Hekler, J. S. Utikal, N. Grabe, D. Schadendorf et al., Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review, Journal of Medical Internet Research, vol.20, issue.10, p.e11936, 2018.

M. F. Abbod, J. W. Catto, D. A. Linkens, and F. C. Hamdy, Application of Artificial Intelligence to the Management of Urological Cancer, Journal of Urology, vol.178, issue.4, pp.1150-1156, 2007.

S. L. Goldenberg, G. Nir, and S. E. Salcudean, A new era: artificial intelligence and machine learning in prostate cancer, Nature Reviews Urology, vol.16, issue.7, pp.391-403, 2019.

R. Suarez-ibarrola, S. Hein, G. Reis, C. Gratzke, and A. Miernik, Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer, World Journal of Urology, vol.38, issue.10, pp.2329-2347, 2019.

D. Moher, L. Shamseer, M. J. Clarke, D. Ghersi, A. Liberati et al., Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement, Systematic Reviews, vol.4, issue.1, 2015.

S. Brönimann, B. Pradere, P. Karakiewicz, M. Abufaraj, A. Briganti et al., An overview of current and emerging diagnostic, staging and prognostic markers for prostate cancer, Expert Review of Molecular Diagnostics, vol.20, issue.8, pp.841-850, 2020.

R. J. Macinnis, D. F. Schmidt, E. Makalic, G. Severi, L. M. Fitzgerald et al., Use of a Novel Nonparametric Version of DEPTH to Identify Genomic Regions Associated with Prostate Cancer Risk, Cancer Epidemiology Biomarkers & Prevention, vol.25, issue.12, pp.1619-1624, 2016.

Q. Hou, Z. T. Bing, C. Hu, M. Y. Li, K. H. Yang et al., RankProd Combined with Genetic Algorithm Optimized Artificial Neural Network Establishes a Diagnostic and Prognostic Prediction Model that Revealed C1QTNF3 as a Biomarker for Prostate Cancer, EBioMedicine, vol.32, pp.234-244, 2018.

J. Ishioka, Y. Matsuoka, S. Uehara, Y. Yasuda, T. Kijima et al., Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm, BJU International, vol.122, issue.3, pp.411-417, 2018.

P. C. Vos, T. Hambrock, J. O. Barenstz, and H. J. Huisman, Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI, Physics in Medicine and Biology, vol.55, issue.6, pp.1719-1734, 2010.

E. Niaf, O. Rouvière, F. Mège-lechevallier, F. Bratan, and C. Lartizien, Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI, Physics in Medicine and Biology, vol.57, issue.12, pp.3833-3851, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00796813

V. Giannini, S. Mazzetti, A. Vignati, F. Russo, E. Bollito et al., A fully automatic computer aided diagnosis system for peripheral zone prostate cancer detection using multi-parametric magnetic resonance imaging, Computerized Medical Imaging and Graphics, vol.46, pp.219-226, 2015.

A. Rampun, Z. Chen, P. Malcolm, B. P. Tiddeman, and R. Zwiggelaar, Computer-aided diagnosis: detection and localization of prostate cancer within the peripheral zone, International Journal for Numerical Methods in Biomedical Engineering, vol.32, issue.5, p.e02745, 2015.

X. Wang, W. Yang, J. Weinreb, J. Han, Q. Li et al., Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning, Scientific Reports, vol.7, issue.1, 2017.

Y. Song, Y. Zhang, X. Yan, H. Liu, M. Zhou et al., Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI, Journal of Magnetic Resonance Imaging, vol.48, issue.6, pp.1570-1577, 2018.

L. Matulewicz, J. F. Jansen, L. Bokacheva, H. A. Vargas, O. Akin et al., Anatomic segmentation improves prostate cancer detection with artificial neural networks analysis of1H magnetic resonance spectroscopic imaging, Journal of Magnetic Resonance Imaging, vol.40, issue.6, pp.1414-1421, 2013.

K. Zhao, C. Wang, J. Hu, X. Yang, H. Wang et al., Prostate cancer identification: quantitative analysis of T2-weighted MR images based on a back propagation artificial neural network model, Science China Life Sciences, vol.58, issue.7, pp.666-673, 2015.

N. Betrouni, N. Makni, S. Lakroum, S. Mordon, A. Villers et al., Computer-aided analysis of prostate multiparametric MR images: an unsupervised fusion-based approach, International Journal of Computer Assisted Radiology and Surgery, vol.10, issue.9, pp.1515-1526, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01183108

D. Bonekamp, S. Kohl, M. Wiesenfarth, P. Schelb, J. P. Radtke et al., Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values, Radiology, vol.289, issue.1, pp.128-137, 2018.

S. E. Viswanath, P. V. Chirra, M. C. Yim, N. M. Rofsky, A. S. Purysko et al., Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study, BMC Medical Imaging, vol.19, issue.1, pp.22-28, 2019.

M. H. Le, J. Chen, L. Wang, Z. Wang, W. Liu et al., Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks, Physics in Medicine & Biology, vol.62, issue.16, pp.6497-6514, 2017.

J. Li, Z. Weng, H. Xu, Z. Zhang, H. Miao et al., Support Vector Machines (SVM) classification of prostate cancer Gleason score in central gland using multiparametric magnetic resonance images: A cross-validated study, European Journal of Radiology, vol.98, pp.61-67, 2018.

J. Wang, C. J. Wu, M. L. Bao, J. Zhang, X. Wang et al., Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer, European Radiology, vol.27, issue.10, pp.4082-4090, 2017.

J. C. Weinreb, J. O. Barentsz, P. L. Choyke, F. Cornud, M. A. Haider et al., PI-RADS Prostate Imaging ? Reporting and Data System: 2015, Version 2, European Urology, vol.69, issue.1, pp.16-40, 2016.

D. Fehr, H. Veeraraghavan, A. Wibmer, T. Gondo, K. Matsumoto et al., Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images, Proceedings of the National Academy of Sciences, vol.112, issue.46, pp.E6265-E6273, 2015.

X. Min, M. Li, D. Dong, Z. Feng, P. Zhang et al., Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method, European Journal of Radiology, vol.115, pp.16-21, 2019.

S. Azizi, S. Bayat, P. Yan, A. Tahmasebi, J. T. Kwak et al., Deep Recurrent Neural Networks for Prostate Cancer Detection: Analysis of Temporal Enhanced Ultrasound, IEEE Transactions on Medical Imaging, vol.37, issue.12, pp.2695-2703, 2018.

M. Koizumi, K. Motegi, M. Koyama, T. Terauchi, T. Yuasa et al., Diagnostic performance of a computer-assisted diagnosis system for bone scintigraphy of newly developed skeletal metastasis in prostate cancer patients: search for low-sensitivity subgroups, Annals of Nuclear Medicine, vol.31, issue.7, pp.521-528, 2017.

E. Acar, A. Leblebici, B. E. Ellidokuz, Y. Ba?b?nar, and G. Ç. Kaya, Machine learning for differentiating metastatic and completely responded sclerotic bone lesion in prostate cancer: a retrospective radiomics study, The British Journal of Radiology, vol.92, issue.1101, p.20190286, 2019.

N. Lawrentschuk, G. Lockwood, P. Davies, A. Evans, J. Sweet et al., Predicting prostate biopsy outcome: artificial neural networks and polychotomous regression are equivalent models, International Urology and Nephrology, vol.43, issue.1, pp.23-30, 2010.

T. Takeuchi, M. Hattori-kato, Y. Okuno, S. Iwai, and K. Mikami, Prediction of prostate cancer by deep learning with multilayer artificial neural network, Canadian Urological Association Journal, vol.13, issue.5, pp.145-150, 2018.

B. J. Kim, M. Merchant, C. Zheng, A. A. Thomas, R. Contreras et al., Second Prize: A Natural Language Processing Program Effectively Extracts Key Pathologic Findings from Radical Prostatectomy Reports, Journal of Endourology, vol.28, issue.12, pp.1474-1478, 2014.

G. Nir, S. Hor, D. Karimi, L. Fazli, B. F. Skinnider et al., Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts, Medical Image Analysis, vol.50, pp.167-180, 2018.

L. Gorelick, O. Veksler, M. Gaed, J. A. Gomez, M. Moussa et al., Prostate Histopathology: Learning Tissue Component Histograms for Cancer Detection and Classification, IEEE Transactions on Medical Imaging, vol.32, issue.10, pp.1804-1818, 2013.

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-balla, J. Melamed et al., Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning, Journal of Biomedical Optics, vol.22, issue.3, p.036015, 2017.

M. Lucas, I. Jansen, C. D. Savci-heijink, S. L. Meijer, O. J. De-boer et al., Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies, Virchows Archiv, vol.475, issue.1, pp.77-83, 2019.

E. Arvaniti, K. S. Fricker, M. Moret, N. Rupp, T. Hermanns et al., Automated Gleason grading of prostate cancer tissue microarrays via deep learning, Scientific Reports, vol.8, issue.1, 2018.

S. Y. Kim, S. K. Moon, D. C. Jung, S. I. Hwang, C. K. Sung et al., Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network, Korean Journal of Radiology, vol.12, issue.5, p.588, 2011.

C. W. Tsao, C. Y. Liu, T. L. Cha, S. T. Wu, G. H. Sun et al., Artificial neural network for predicting pathological stage of clinically localized prostate cancer in a Taiwanese population, Journal of the Chinese Medical Association, vol.77, issue.10, pp.513-518, 2014.

J. Wang, C. J. Wu, M. L. Bao, J. Zhang, H. B. Shi et al., Using support vector machine analysis to assess PartinMR: A new prediction model for organ-confined prostate cancer, Journal of Magnetic Resonance Imaging, vol.48, issue.2, pp.499-506, 2018.

G. B. Auffenberg, K. R. Ghani, S. Ramani, E. Usoro, B. Denton et al., askMUSIC: Leveraging a Clinical Registry to Develop a New Machine Learning Model to Inform Patients of Prostate Cancer Treatments Chosen by Similar Men, European Urology, vol.75, issue.6, pp.901-907, 2019.

O. Ukimura, M. Aron, M. Nakamoto, S. Shoji, A. L. Abreu et al., Three-Dimensional Surgical Navigation Model with TilePro Display During Robot-Assisted Radical Prostatectomy, Journal of Endourology, vol.28, issue.6, pp.625-630, 2014.

A. J. Hung, J. Chen, A. Jarc, D. Hatcher, H. Djaladat et al., Development and Validation of Objective Performance Metrics for Robot-Assisted Radical Prostatectomy: A Pilot Study, Journal of Urology, vol.199, issue.1, pp.296-304, 2018.

A. J. Hung, J. Chen, Z. Che, T. Nilanon, A. Jarc et al., Utilizing Machine Learning and Automated Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes, Journal of Endourology, vol.32, issue.5, pp.438-444, 2018.

A. J. Hung, J. Chen, S. Ghodoussipour, P. J. Oh, Z. Liu et al., A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy, BJU International, vol.124, issue.3, pp.487-495, 2019.

W. K. Ranasinghe, D. De-silva, T. Bandaragoda, A. Adikari, D. Alahakoon et al., Robotic-assisted vs. open radical prostatectomy: A machine learning framework for intelligent analysis of patient-reported outcomes from online cancer support groups, Urologic Oncology: Seminars and Original Investigations, vol.36, issue.12, pp.529.e1-529.e9, 2018.

A. Nicolae, G. Morton, H. Chung, A. Loblaw, S. Jain et al., Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy, International Journal of Radiation Oncology*Biology*Physics, vol.97, issue.4, pp.822-829, 2017.

T. Kajikawa, N. Kadoya, K. Ito, Y. Takayama, T. Chiba et al., Automated prediction of dosimetric eligibility of patients with prostate cancer undergoing intensity-modulated radiation therapy using a convolutional neural network, Radiological Physics and Technology, vol.11, issue.3, pp.320-327, 2018.

S. Lee, S. Kerns, H. Ostrer, B. Rosenstein, J. O. Deasy et al., Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy, International Journal of Radiation Oncology*Biology*Physics, vol.101, issue.1, pp.128-135, 2018.

J. H. Oh, S. Kerns, H. Ostrer, S. N. Powell, B. Rosenstein et al., Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes, Scientific Reports, vol.7, issue.1, p.43381, 2017.

A. Pella, R. Cambria, M. Riboldi, B. A. Jereczek-fossa, C. Fodor et al., Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy, Medical Physics, vol.38, issue.6Part1, pp.2859-2867, 2011.

N. H. Heintzelman, R. J. Taylor, L. Simonsen, R. Lustig, D. Anderko et al., Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text, Journal of the American Medical Informatics Association, vol.20, issue.5, pp.898-905, 2013.

Y. D. Zhang, J. Wang, C. J. Wu, M. L. Bao, H. Li et al., An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification, Oncotarget, vol.7, issue.47, pp.78140-78151, 2016.

N. C. Wong, C. J. Lam, L. Patterson, and B. Shayegan, Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy, BJU International, vol.123, issue.1, pp.51-57, 2018.

H. Abdollahi, B. Mofid, I. Shiri, A. Razzaghdoust, A. Saadipoor et al., Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer, La radiologia medica, vol.124, issue.6, pp.555-567, 2019.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek et al., Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, vol.286, issue.5439, pp.531-537, 1999.

A. L. Fogel and J. C. Kvedar, Artificial intelligence powers digital medicine, npj Digital Medicine, vol.1, issue.1, pp.1-4, 2018.

M. W. Libbrecht and W. S. Noble, Machine learning applications in genetics and genomics, Nature Reviews Genetics, vol.16, issue.6, pp.321-332, 2015.

J. Xu, P. Yang, S. Xue, B. Sharma, M. Sanchez-martin et al., Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives, Human Genetics, vol.138, issue.2, pp.109-124, 2019.

V. Golkov, M. J. Skwark, A. Golkov, A. Dosovitskiy, T. Brox et al., Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images, Advances in Neural Information Processing Systems, Proceedings of the 30th Conference on Neural Information Processing Systems, 2016.

H. D. Lee, W. Vavrik, and H. Abdualla, Development of IDOT?s Proposed Smoothness Specification Based on the International Roughness Index, pp.4222-4230, 2020.

K. Theofilatos, N. Pavlopoulou, C. A. Papasavvas, S. Likothanassis, C. Dimitrakopoulos et al., Predicting protein complexes from weighted protein?protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering, Artificial Intelligence in Medicine, vol.63, issue.3, pp.181-189, 2015.

T. Rapakoulia, K. Theofilatos, D. Kleftogiannis, S. Likothanasis, A. Tsakalidis et al., EnsembleGASVR: a novel ensemble method for classifying missense single nucleotide polymorphisms, Bioinformatics, vol.30, issue.16, pp.2324-2333, 2014.

M. Fairweather and C. P. Raut, To Biopsy, or Not to Biopsy: Is There Really a Question?, Annals of Surgical Oncology, vol.26, issue.13, pp.4182-4184, 2019.

A. Heidenreich, J. Bellmunt, M. Bolla, S. Joniau, M. Mason et al., EAU Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Treatment of Clinically Localised Disease, European Urology, vol.59, issue.1, pp.61-71, 2011.

S. Doyle, M. Hwang, K. Shah, A. Madabhushi, M. Feldman et al., AUTOMATED GRADING OF PROSTATE CANCER USING ARCHITECTURAL AND TEXTURAL IMAGE FEATURES, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1284-1287, 2007.

P. R. Vennalaganti, V. N. Kanakadandi, S. A. Gross, S. Parasa, K. K. Wang et al., Inter-Observer Agreement among Pathologists Using Wide-Area Transepithelial Sampling With Computer-Assisted Analysis in Patients With Barrett?s Esophagus, American Journal of Gastroenterology, vol.110, issue.9, pp.1257-1260, 2015.

B. E. Bejnordi, M. Veta, P. J. Van-diest, B. Van-ginneken, N. Karssemeijer et al., The CAMELYON16 Consortium Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer, JAMA, vol.318, pp.2199-2210, 2017.

V. Kumar, Y. Gu, S. Basu, A. Berglund, S. A. Eschrich et al., Radiomics: the process and the challenges, Magnetic Resonance Imaging, vol.30, issue.9, pp.1234-1248, 2012.

J. C. Peeken, M. Bernhofer, B. Wiestler, T. Goldberg, D. Cremers et al., Radiomics in radiooncology ? Challenging the medical physicist, Physica Medica, vol.48, pp.27-36, 2018.

R. J. Gillies, P. E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data, Radiology, vol.278, issue.2, pp.563-577, 2016.

R. Stoyanova, M. Takhar, Y. Tschudi, J. C. Ford, G. Solórzano et al., Prostate cancer radiomics and the promise of radiogenomics, Translational Cancer Research, vol.5, issue.4, pp.432-447, 2016.

P. Lambin, R. G. Van-stiphout, M. H. Starmans, E. Rios-velazquez, G. Nalbantov et al., Predicting outcomes in radiation oncology?multifactorial decision support systems, Nature Reviews Clinical Oncology, vol.10, issue.1, pp.27-40, 2012.

X. Fave, L. Zhang, J. Yang, D. Mackin, P. Balter et al., Delta-radiomics features for the prediction of patient outcomes in non?small cell lung cancer, Scientific Reports, vol.7, issue.1, pp.1-11, 2017.

F. Porpiglia, C. Fiori, E. Checcucci, D. Amparore, and R. Bertolo, Augmented Reality Robot-assisted Radical Prostatectomy: Preliminary Experience, Urology, vol.115, p.184, 2018.

F. Porpiglia, E. Checcucci, D. Amparore, R. Autorino, A. Piana et al., Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D?) technology: a radiological and pathological study, BJU International, vol.123, issue.5, pp.834-845, 2018.

B. Fida, F. Cutolo, G. Di-franco, M. Ferrari, and V. Ferrari, Augmented reality in open surgery, Updates in Surgery, vol.70, issue.3, pp.389-400, 2018.

H. Feußner, D. Ostler, and D. Wilhelm, Robotik und ?augmented reality?, Der Chirurg, vol.89, issue.10, pp.760-768, 2018.

N. Wake, M. A. Bjurlin, P. Rostami, H. Chandarana, and W. C. Huang, Three-dimensional Printing and Augmented Reality: Enhanced Precision for Robotic Assisted Partial Nephrectomy, Urology, vol.116, pp.227-228, 2018.

P. Pessaux, M. Diana, L. Soler, T. Piardi, D. Mutter et al., Robotic duodenopancreatectomy assisted with augmented reality and real-time fluorescence guidance, Surgical Endoscopy, vol.28, issue.8, pp.2493-2498, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02493579

P. Pessaux, M. Diana, L. Soler, T. Piardi, D. Mutter et al., Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy, Langenbeck's Archives of Surgery, vol.400, issue.3, pp.381-385, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02492418

R. Tang, L. F. Ma, Z. X. Rong, M. D. Li, J. P. Zeng et al., Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: A review of current methods, Hepatobiliary & Pancreatic Diseases International, vol.17, issue.2, pp.101-112, 2018.

L. Lin, Y. Shi, A. Tan, M. Bogari, M. Zhu et al., Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms?A feasibility study, Journal of Cranio-Maxillofacial Surgery, vol.44, issue.2, pp.215-223, 2016.

P. Pratt and A. Arora, Transoral Robotic Surgery: Image Guidance and Augmented Reality, ORL, vol.80, issue.3-4, pp.204-212, 2018.

C. H. Ewurum, Y. Guo, S. Pagnha, Z. Feng, and X. Luo, Surgical Navigation in Orthopedics: Workflow and System Review, Advances in Experimental Medicine and Biology, vol.1093, pp.47-63, 2018.

M. J. Fard, S. Ameri, R. Darin-ellis, R. B. Chinnam, A. K. Pandya et al., Automated robot-assisted surgical skill evaluation: Predictive analytics approach, The International Journal of Medical Robotics and Computer Assisted Surgery, vol.14, issue.1, p.e1850, 2017.

Z. Wang and A. Majewicz-fey, Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery, International Journal of Computer Assisted Radiology and Surgery, vol.13, issue.12, pp.1959-1970, 2018.

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks, Int. J. Comput. Assist. Radiol. Surg, vol.14, pp.1611-1617, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02434381

Y. K. Kassahun, B. Yu, A. T. Tibebu, D. Stoyanov, S. Giannarou et al., Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions, Int. J. Comput. Assist. Radiol. Surg, vol.11, pp.553-568, 2015.

M. Hutson, Missing Data Hinder Replication of Artificial Intelligence Studies, Science AAAS, 2018.

Z. C. Lipton, The doctor just won't accept that! arXiv 2017

D. S. Watson, J. Krutzinna, I. N. Bruce, C. E. Griffiths, I. B. Mcinnes et al., Clinical applications of machine learning algorithms: Beyond the black box, BMJ, vol.364, 2019.

O. Cussenot, A. Valeri, P. Berthon, G. Fournier, and P. Mangin, Hereditary prostate cancer and other genetic predispositions to prostate cancer, Urol. Int, vol.60, pp.30-34, 1998.

P. A. Keane and E. J. Topol, With an eye to AI and autonomous diagnosis, npj Digital Medicine, vol.1, issue.1, 2018.

J. B. Eifler, Z. Feng, B. M. Lin, M. T. Partin, E. B. Humphreys et al., An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011, BJU International, vol.111, issue.1, pp.22-29, 2012.

S. R. Leyh-bannurah, S. Gazdovich, L. Budäus, E. Zaffuto, P. Dell'oglio et al., Population-Based External Validation of the Updated 2012 Partin Tables in Contemporary North American Prostate Cancer Patients, The Prostate, vol.77, issue.1, pp.105-113, 2016.

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, vol.542, pp.115-118, 2017.

V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs, JAMA, vol.316, pp.2402-2410, 2016.

J. De-fauw, J. R. Ledsam, B. Romera-paredes, S. Nikolov, N. Tomasev et al., Clinically applicable deep learning for diagnosis and referral in retinal disease, Nat. Med, vol.24, pp.1342-1350, 2018.

B. Korbar, A. M. Olofson, A. P. Miraflor, C. M. Nicka, M. A. Suriawinata et al., Deep learning for classification of colorectal polyps on whole-slide images, J. Pathol. Inform, vol.8, p.30, 2017.

Y. Komeda, H. Handa, T. Watanabe, T. Nomura, M. Kitahashi et al., Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience, Oncology, vol.93, issue.1, pp.30-34, 2017.

E. Christodoulou, J. Ma, G. S. Collins, E. W. Steyerberg, J. Y. Verbakel et al., A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models, J. Clin. Epidemiol, vol.110, pp.12-22, 2019.

S. Dreiseitl and L. Ohno-machado, Logistic regression and artificial neural network classification models: a methodology review, Journal of Biomedical Informatics, vol.35, issue.5-6, pp.352-359, 2002.

Z. Cui and G. Gong, The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features, NeuroImage, vol.178, pp.622-637, 2018.

T. Shaikhina, D. Lowe, S. Daga, D. C. Briggs, R. Higgins et al., Machine Learning for predictive modelling based on small data in biomedical engineering, IFAC PapersOnLine, vol.48, pp.469-474, 2015.

M. Hutson, Artificial intelligence faces reproducibility crisis, Science, vol.359, pp.725-726, 2018.

A. Bizzego, N. Bussola, M. Chierici, V. Maggio, M. Francescatto et al., Evaluating reproducibility of AI algorithms in digital pathology with DAPPER, PLoS Comput. Biol, vol.15, 2019.

M. Codari, S. Schiaffino, F. Sardanelli, and R. M. Trimboli, Artificial Intelligence for Breast MRI in 2008?2018: A Systematic Mapping Review, American Journal of Roentgenology, vol.212, issue.2, pp.280-292, 2019.

N. I. Yassin, S. Omran, E. M. El-houby, and H. Allam, Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review, Computer Methods and Programs in Biomedicine, vol.156, pp.25-45, 2018.

R. D. Nindrea, T. Aryandono, L. Lazuardi, and I. Dwiprahasto, Association of Dietary Intake Ratio of n-3/n-6 Polyunsaturated Fatty Acids with Breast Cancer Risk in Western and Asian Countries: A Meta-Analysis, Asian Pacific Journal of Cancer Prevention, vol.20, issue.5, pp.1321-1327, 2019.

A. Murphy, M. R. Skalski, and F. Gaillard, The utilisation of convolutional neural networks in detecting pulmonary nodules: a review, The British Journal of Radiology, vol.91, issue.1090, p.20180028, 2018.

J. D. Rudie, A. M. Rauschecker, R. N. Bryan, C. Davatzikos, and S. Mohan, Emerging Applications of Artificial Intelligence in Neuro-Oncology, Radiology, vol.290, issue.3, pp.607-618, 2019.

A. V. Nguyen, E. E. Blears, E. Ross, R. R. Lall, and J. Ortega-barnett, Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis, Neurosurgical Focus, vol.45, issue.5, p.E5, 2018.

D. Souza, L. A. Palm, C. Mendel, R. Hook, C. Ebigbo et al., A survey on Barrett's esophagus analysis using machine learning, Comput. Biol. Med, vol.96, pp.203-213, 2018.

R. Sharma, The burden of prostate cancer is associated with human development index: evidence from 87 countries, 1990?2016, EPMA Journal, vol.10, issue.2, pp.137-152, 2019.

O. Golubnitschaja, B. Baban, G. Boniolo, W. Wang, R. Bubnov et al., Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016, EPMA Journal, vol.7, issue.1, 2016.

M. Lu and X. Zhan, The crucial role of multiomic approach in cancer research and clinically relevant outcomes, EPMA Journal, vol.9, issue.1, pp.77-102, 2018.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI