J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, and B. Z. Tang, Aggregation-Induced Emission: Together We Shine, United We Soar!, Chemical Reviews, vol.115, issue.21, pp.11718-11940, 2015.

J. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang et al., Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts, Advanced Materials, vol.26, issue.31, pp.5429-5479, 2014.

Y. Hong, J. W. Lam, and B. Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chemical Communications, issue.29, p.4332, 2009.

Y. Chen, J. W. Lam, R. T. Kwok, B. Liu, and B. Z. Tang, Aggregation-induced emission: fundamental understanding and future developments, Materials Horizons, vol.6, issue.3, pp.428-433, 2019.

Y. Hong, J. W. Lam, and B. Z. Tang, Aggregation-induced emission, Chemical Society Reviews, vol.40, issue.11, p.5361, 2011.

Y. Wang, T. Zhang, and X. Liang, Aggregation-Induced Emission: Lighting up Cells, Revealing Life!, Small, vol.12, issue.47, pp.6451-6477, 2016.

L. Mao, Y. Liu, S. Yang, Y. Li, X. Zhang et al., Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules, Dyes and Pigments, vol.162, pp.611-623, 2019.

C. Zhu, R. T. Kwok, J. W. Lam, and B. Z. Tang, Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine, ACS Applied Bio Materials, vol.1, issue.6, pp.1768-1786, 2018.

X. Lou, Z. Zhao, and B. Z. Tang, Organic Dots Based on AIEgens for Two-Photon Fluorescence Bioimaging, Small, vol.12, issue.47, pp.6430-6450, 2016.

F. Hu, S. Xu, and B. Liu, Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications, Advanced Materials, vol.30, issue.45, p.1801350, 2018.

Y. Zhang, Y. Wang, J. Wang, and X. Liang, Improved pharmaceutical research and development with AIE-based nanostructures, Materials Horizons, vol.5, issue.5, pp.799-812, 2018.

J. Dai, X. Wu, S. Ding, X. Lou, F. Xia et al., Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy, Journal of Medicinal Chemistry, vol.63, issue.5, pp.1996-2012, 2020.

M. Gao and B. Z. Tang, Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives, ACS Sensors, vol.2, issue.10, pp.1382-1399, 2017.

D. D. La, S. V. Bhosale, L. A. Jones, and S. V. Bhosale, Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications, ACS Applied Materials & Interfaces, vol.10, issue.15, pp.12189-12216, 2017.

L. Yan, Y. Zhang, B. Xu, and W. Tian, Fluorescent nanoparticles based on AIE fluorogens for bioimaging, Nanoscale, vol.8, issue.5, pp.2471-2487, 2016.

D. Wang and B. Z. Tang, Aggregation-Induced Emission Luminogens for Activity-Based Sensing, Accounts of Chemical Research, vol.52, issue.9, pp.2559-2570, 2019.

X. Wei, M. Zhu, H. Yan, C. Lu, and J. Xu, Recent Advances in Aggregation?Induced Electrochemiluminescence, Chemistry ? A European Journal, vol.25, issue.55, pp.12671-12683, 2019.

F. Rizzo and F. Cucinotta, Recent Developments in AIEgens for Non-doped and TADF OLEDs, Israel Journal of Chemistry, vol.58, issue.8, pp.874-888, 2018.

E. Ubba, Y. Tao, Z. Yang, J. Zhao, L. Wang et al., Organic Mechanoluminescence with Aggregation-Induced Emission, Chemistry - An Asian Journal, vol.13, issue.21, pp.3106-3121, 2018.

Z. Yang, Z. Chi, Z. Mao, Y. Zhang, S. Liu et al., Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties, Materials Chemistry Frontiers, vol.2, issue.5, pp.861-890, 2018.

J. Yang, K. Gu, C. Shi, M. Li, P. Zhao et al., Fluorescent thermometer based on a quinolinemalononitrile copolymer with aggregation-induced emission characteristics, Materials Chemistry Frontiers, vol.3, issue.8, pp.1503-1509, 2019.

Y. Xie and Z. Li, Recent Advances in the Z / E Isomers of Tetraphenylethene Derivatives: Stereoselective Synthesis, AIE Mechanism, Photophysical Properties, and Application as Chemical Probes, Chemistry ? An Asian Journal, vol.14, issue.15, pp.2524-2541, 2019.

Z. Zhao, J. W. Lam, and B. Z. Tang, Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes, Journal of Materials Chemistry, vol.22, issue.45, p.23726, 2012.

Z. Zhao, J. W.-y.-lam, and B. Zhong-tang, Aggregation-Induced Emission of Tetraarylethene Luminogens, Current Organic Chemistry, vol.14, issue.18, pp.2109-2132, 2010.

M. Arribat, E. Rémond, S. Richeter, P. Gerbier, S. Clément et al., Silole Amino Acids with Aggregation-Induced Emission Features Synthesized by Hydrosilylation, European Journal of Organic Chemistry, vol.2019, issue.12, pp.2275-2281, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02100708

Z. Zhao, B. He, and B. Z. Tang, Aggregation-induced emission of siloles, Chemical Science, vol.6, issue.10, pp.5347-5365, 2015.

Z. Guo, A. Shao, and W. Zhu, Long wavelength AIEgen of quinoline-malononitrile, Journal of Materials Chemistry C, vol.4, issue.14, pp.2640-2646, 2016.

Z. Guo, C. Yan, and W. H. Zhu, Graphical Abstract: Angew. Chem. Int. Ed. 16/2020, Angewandte Chemie International Edition, vol.59, issue.16, pp.6297-6309, 2020.

W. Z. Yuan, Y. Gong, S. Chen, X. Y. Shen, J. W. Lam et al., Efficient Solid Emitters with Aggregation-Induced Emission and Intramolecular Charge Transfer Characteristics: Molecular Design, Synthesis, Photophysical Behaviors, and OLED Application, Chemistry of Materials, vol.24, issue.8, pp.1518-1528, 2012.

Z. Ning, Z. Chen, Q. Zhang, Y. Yan, S. Qian et al., Aggregation-induced Emission (AIE)-active Starburst Triarylamine Fluorophores as Potential Non-doped Red Emitters for Organic Light-emitting Diodes and Cl2 Gas Chemodosimeter, Advanced Functional Materials, vol.17, issue.18, pp.3799-3807, 2007.

B. Wang, Y. Wang, J. Hua, Y. Jiang, J. Huang et al., Starburst Triarylamine Donor-Acceptor-Donor Quadrupolar Derivatives Based on Cyano-Substituted Diphenylaminestyrylbenzene: Tunable Aggregation-Induced Emission Colors and Large Two-Photon Absorption Cross Sections, Chemistry - A European Journal, vol.17, issue.9, pp.2647-2655, 2011.

J. Hua, H. Tian, and H. Zhang, Properties of Triarylamine Derivatives with AIE and Large Two-Photon Absorbing Cross-Sections, Aggregation-Induced Emission: Fundamentals, pp.169-184, 2013.

N. Yamamoto, Mechanisms of Aggregation-Induced Emission and Photo/Thermal E/Z Isomerization of a Cyanostilbene Derivative: Theoretical Insights, The Journal of Physical Chemistry C, vol.122, issue.23, pp.12434-12440, 2018.

A. K. Vasu, M. Radhakrishna, and S. Kanvah, Self-Assembly Tuning of ?-Cyanostilbene Fluorogens: Aggregates to Nanostructures, The Journal of Physical Chemistry C, vol.121, issue.40, pp.22478-22486, 2017.

B. Xu, J. Zhang, and W. Tian, Aggregation-Induced Emission of 9,10-Distyrylanthracene Derivatives and Their Applications, Aggregation-Induced Emission: Fundamentals, pp.61-82, 2013.

J. Zhang, S. Ma, H. Fang, B. Xu, H. Sun et al., Insights into the origin of aggregation enhanced emission of 9,10-distyrylanthracene derivatives, Materials Chemistry Frontiers, vol.1, issue.7, pp.1422-1429, 2017.

K. C. Nicolaou, J. Y. Ramphal, N. A. Petasis, and C. N. Serhan, Lipoxins and Related Eicosanoids: Biosynthesis, Biological Properties, and Chemical Synthesis, Angewandte Chemie International Edition in English, vol.30, issue.9, pp.1100-1116, 1991.

B. J. Rawlings, Biosynthesis of fatty acids and related metabolites, Natural Product Reports, vol.14, issue.4, p.335, 1997.

D. J. Faulkner, Nat. Prod. Rep, vol.15, pp.113-158, 1998.

S. D. Rychnovsky, B. N. Rogers, and T. I. Richardson, Acc. Chem. Res, vol.31, pp.9-17, 1998.

B. C. Ranu, S. Banerjee, and A. Das, Tetrahedron Lett, vol.47, pp.881-884, 2006.

J. H. Barnard, J. C. Collings, A. Whiting, S. A. Przyborski, and T. B. Marder, Synthetic Retinoids: Structure-Activity Relationships, Chemistry - A European Journal, vol.15, issue.43, pp.11430-11442, 2009.

Y. Ezhumalai, T. Wang, and H. Hsu, Regioselective Synthesis of Tetraphenyl-1,3-butadienes with Aggregation-Induced Emission, Organic Letters, vol.17, issue.3, pp.536-539, 2015.

Y. Zhang, H. Mao, W. Xu, J. Shi, Z. Cai et al., Aggregation-Induced Emission of Multiphenyl-Substituted 1,3-Butadiene Derivatives: Synthesis, Properties and Application, Chemistry - A European Journal, vol.24, issue.60, pp.15965-15977, 2018.

M. K. Bera, C. Chakraborty, and S. Malik, Solid state emissive organic fluorophores with remarkable broad color tunability based on aryl-substituted buta-1,3-diene as the central core, Journal of Materials Chemistry C, vol.5, issue.27, pp.6872-6879, 2017.

S. Tavazzi, A. Camposeo, D. Pisignano, and L. Silvestri, Molecular Packing versus Strength and Effective Mass of the Emitting Exciton of ?-1,1,4,4-Tetraphenyl-1,3-butadiene, The Journal of Physical Chemistry C, vol.118, issue.16, pp.8588-8594, 2014.

J. Chen, B. Xu, X. Ouyang, B. Z. Tang, and Y. Cao, Aggregation-Induced Emission ofcis,cis-1,2,3,4-Tetraphenylbutadiene from Restricted Intramolecular Rotation, The Journal of Physical Chemistry A, vol.108, issue.37, pp.7522-7526, 2004.

K. Baba, H. Kasai, S. Okada, H. Oikawa, and H. Nakanishi, Fabrication of organic nanocrystals using microwave irradiation and their optical properties, Optical Materials, vol.21, issue.1-3, pp.591-594, 2003.

S. Tavazzi, L. Silvestri, L. Miozzo, A. Papagni, P. Spearman et al., Polarized Absorption, Spontaneous and Stimulated Blue Light Emission of J-type Tetraphenylbutadiene Monocrystals, ChemPhysChem, vol.11, issue.2, pp.429-434, 2010.

Y. Zhang, H. Xu, W. Xu, C. Zhang, J. Shi et al., Conformational sensitivity of tetraphenyl-1,3-butadiene derivatives with aggregation-induced emission characteristics, Science China Chemistry, vol.62, issue.10, pp.1393-1397, 2019.

J. L. Banal, J. M. White, K. P. Ghiggino, and W. W. Wong, Concentrating Aggregation-Induced Fluorescence in Planar Waveguides: A Proof-of-Principle, Scientific Reports, vol.4, issue.1, p.4635, 2014.

Y. Zhang, L. Kong, J. Shi, B. Tong, J. Zhi et al., Aggregation-Induced Emission of Hexaphenyl-1,3-butadiene, Chinese Journal of Chemistry, vol.33, issue.7, pp.701-704, 2015.

Y. Liu, J. W. Lam, X. Zheng, Q. Peng, R. T. Kwok et al., Aggregation-Induced Emission and Photocyclization of Poly(hexaphenyl-1,3-butadiene)s Synthesized from ?1 + 2? Polycoupling of Internal Alkynes and Arylboronic Acids, Macromolecules, vol.49, issue.16, pp.5817-5830, 2016.

J. R. Clark, J. R. Griffiths, and S. T. Diver, Ruthenium Hydride-Promoted Dienyl Isomerization: Access to Highly Substituted 1,3-Dienes, Journal of the American Chemical Society, vol.135, issue.9, pp.3327-3330, 2013.

S. Yamaguchi, T. Endo, M. Uchida, T. Izumizawa, K. Furukawa et al., Cover Picture, Chemistry - A European Journal, vol.6, issue.9, pp.1509-1509, 2000.

T. J. Brown, B. D. Robertson, and R. A. Widenhoefer, Synthesis and X-ray crystal structure of a cationic gold (I) ?-(1,3-diene) complex generated via isomerization of a gold ?-allene complex, Journal of Organometallic Chemistry, vol.758, pp.25-28, 2014.

C. Ting, Y. Hsu, and R. Liu, Gold-catalyzed isomerization of unactivated allenes into 1,3-dienes under ambient conditions, Chemical Communications, vol.48, issue.52, p.6577, 2012.

Y. Liu, G. Zhang, and H. Huang, Org. Lett, vol.19, pp.6674-6677, 2017.

Y. Al-jawaheri and M. C. Kimber, Org. Lett, vol.18, pp.3502-3505, 2016.

E. Shirakawa, G. Takahashi, T. Tsuchimoto, and Y. Kawakami, Chem. Commun, pp.2688-2689, 2001.

T. Satoh, S. Ogino, M. Miura, and M. Nomura, Angew. Chem. Int. Ed Engl, vol.43, pp.5063-5065, 2004.

T. Satoh, S. Ogino, M. Miura, and M. Nomura, Angew. Chem, vol.116, pp.5173-5175, 2004.

A. J. Boydston and B. L. Pagenkopf, Improving Quantum Efficiencies of Siloles and Silole-Derived Butadiene Chromophores through Structural Tuning, Angewandte Chemie International Edition, vol.43, issue.46, pp.6336-6338, 2004.

K. A. Wills, H. J. Mandujano-ramírez, G. Merino, G. Oskam, P. Cowper et al., Dyes Pigm, vol.134, pp.419-426, 2016.

Y. Hua, S. Chang, J. He, C. Zhang, J. Zhao et al., Chem. Eur. J, vol.20, pp.6300-6308, 2014.

Z. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi et al., Chem. Mater, vol.20, pp.3993-4003, 2008.

K. Amro, A. K. Thakur, J. Rault-berthelot, C. Poriel, L. Hirsch et al., New J. Chem, vol.37, pp.464-473, 2013.

F. Piron, P. Leriche, I. Grosu, and J. Roncali, J. Mater. Chem, vol.20, pp.10260-10268, 2010.

F. Larmat, J. R. Reynolds, B. A. Reinhardt, L. L. Brott, and S. J. Clarson, J. Polym. Sci. A, vol.35, pp.3627-3636, 1997.

Y. Lee, S. Sadki, B. Tsuie, P. Schottland, and J. R. Reynolds, Synth. Met, vol.119, pp.77-78, 2001.

S. Yamaguchi, Y. Itami, and K. I. Tamao, Organometallics, vol.17, pp.4910-4916, 1998.

A. J. Boydston and B. L. Pagenkopf, Angew. Chem. Int. Ed Engl, vol.43, pp.6336-6338, 2004.

C. Booker, X. Wang, S. Haroun, J. Zhou, M. Jennings et al., Angew. Chem. Int. Ed Engl, vol.47, pp.7731-7735, 2008.

J. S. Murray and P. Politzer, J. Mol. Model, p.101, 2019.

M. Voronkov, V. Pestunovich, and Y. I. Baukov, Metalloorg. Khim, vol.4, pp.1210-1227, 1991.

V. V. Negrebetsky and Y. I. Baukov, Dynamic stereochemistry of hypervalent silicon, germanium and tin compounds containing amidomethyl C, O-chelating ligands, Russian Chemical Bulletin, vol.46, issue.11, pp.1807-1831, 1997.

D. Kost and I. Kalikhman, Hypervalent Silicon Compounds, The Chemistry of Organic Silicon Compounds, pp.1339-1445

Z. Rappoport and Y. Apeloig, The Chemistry of Organic Silicon Compounds, vol.2, p.1339, 1998.

M. Nishio, The CH/? hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates, Physical Chemistry Chemical Physics, vol.13, issue.31, p.13873, 2011.

Y. Zhang, H. Mao, L. Kong, Y. Tian, Z. Tian et al., Effect of E/Z isomerization on the aggregation-induced emission features and mechanochromic performance of dialdehyde-substituted hexaphenyl-1,3-butadiene, Dyes and Pigments, vol.133, pp.354-362, 2016.

C. D. Yehl, K. D. Sherrill, and . Shimizu, J. Am. Chem. Soc, vol.140, pp.13301-13307, 2018.

Y. Zhang, T. Han, S. Gu, T. Zhou, C. Zhao et al., Mechanochromic Behavior of Aryl-Substituted Buta-1,3-Diene Derivatives with Aggregation Enhanced Emission, Chemistry - A European Journal, vol.20, pp.n/a-n/a, 2014.

H. Mao, Y. Li, Y. Zhang, L. Kong, Y. Tian et al., UV-detecting dual-responsive strips based on dicyanoacetate-containing hexaphenylbutadiene with aggregation-induced emission characteristic, Dyes and Pigments, vol.175, p.108169, 2020.

T. Komatsu, D. Oushiki, A. Takeda, M. Miyamura, T. Ueno et al., Rational design of boron dipyrromethene (BODIPY)-based photobleaching-resistant fluorophores applicable to a protein dynamics study, Chemical Communications, vol.47, issue.36, p.10055, 2011.

B. A. Griffin, S. R. Adams, and R. Y. Tsien, Specific Covalent Labeling of Recombinant Protein Molecules Inside Live Cells, Science, vol.281, issue.5374, pp.269-272, 1998.

H. Agnihotri, A. K. Vasu, V. Palakollu, and S. Kanvah, Neutral and cationic pyridylbutadienes: solvatochromism and fluorescence response with sodium cholate, Photochemical & Photobiological Sciences, vol.14, issue.12, pp.2159-2167, 2015.

T. Han, Y. Zhang, X. Feng, Z. Lin, B. Tong et al., Reversible and hydrogen bonding-assisted piezochromic luminescence for solid-state tetraaryl-buta-1,3-diene, Chemical Communications, vol.49, issue.63, p.7049, 2013.

L. Li, H. Nie, M. Chen, J. Sun, A. Qin et al., Aggregation-enhanced emission active tetraphenylbenzene-cored efficient blue light emitter, Faraday Discussions, vol.196, pp.245-253, 2017.

N. Cocherel, C. Poriel, O. Jeannin, A. Yassin, and J. Rault-berthelot, The synthesis, physicochemical properties and anodic polymerization of a novel ladder pentaphenylene, Dyes and Pigments, vol.83, issue.3, pp.339-347, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00406795

P. Hapiot, C. Lagrost, F. Le-floch, E. Raoult, and J. Rault-berthelot, Comparative Study of the Oxidation of Fluorene and 9,9-Disubstituted Fluorenes and Their Related 2,7?-Dimers and Trimer, Chemistry of Materials, vol.17, issue.8, pp.2003-2012, 2005.

Q. Bricaud, A. Cravino, P. Leriche, and J. Roncali, Terthiophene-cyanovinylene ?-conjugated polymers as donor material for organic solar cells, Synthetic Metals, vol.159, issue.23-24, pp.2534-2538, 2009.

J. Rault-berthelot, C. Paul-roth, C. Poriel, S. Juillard, S. Ballut et al., Comparative behaviour of the anodic oxidation of mono-, di- and tetra-arylporphyrins: Towards new electroactive materials with variable bandgaps, Journal of Electroanalytical Chemistry, vol.623, issue.2, pp.204-214, 2008.

J. Rault-berthelot and C. Rozé, Anodic oxidation of the spiro[4,9?-fluorenyl]-2,6-diphenylthiopyran: towards polyphenylene substituted by thiopyrylium or thiopyranyl functions, Synthetic Metals, vol.83, issue.2, pp.153-157, 1996.

J. Rault-berthelot, C. Rozé, and M. M. Granger, Anodic oxidation of 2(9H-fluoren-9-ylidene) malononitrile and 2(9H-fluoren-9-ylidene)-2-phenylacetonitrile. Electrochemical behavior and physicochemical properties of the derived polymers, Journal of Electroanalytical Chemistry, vol.436, issue.1-2, pp.85-101, 1997.

J. Roncali, Conjugated poly(thiophenes): synthesis, functionalization, and applications, Chemical Reviews, vol.92, issue.4, pp.711-738, 1992.

J. Roncali, Synthetic Principles for Bandgap Control in Linear ?-Conjugated Systems, Chemical Reviews, vol.97, issue.1, pp.173-206, 1997.

J. Roncali, P. Blanchard, and P. Frère, 3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional ?-conjugated systems, J. Mater. Chem., vol.15, issue.16, pp.1589-1610, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00015751

G. A. Sotzing, J. R. Reynolds, and P. J. Steel, Electrochromic Conducting Polymers via Electrochemical Polymerization of Bis(2-(3,4-ethylenedioxy)thienyl) Monomers, Chemistry of Materials, vol.8, issue.4, pp.882-889, 1996.

G. Zotti, G. Schiavon, S. Zecchin, and L. Groenendaal, Conductive and Magnetic Properties of Poly(3,6-bis(2-(3,4-ethylenedioxy)thienyl)-N-dodecylcarbazole). A Polyconjugated Polymer with a High Spin Density Polaron State, Chemistry of Materials, vol.11, issue.12, pp.3624-3628, 1999.

P. J. Reynolds and . Steel, Chem. Mater, vol.9, pp.1578-1587, 1997.

C. Xia, R. C. Advincula, A. Baba, and W. Knoll, In Situ Investigations of the Electrodeposition and Electrochromic Properties of Poly(3,4-ethylenedioxythiophene) Ultrathin Films by Electrochemical?Surface Plasmon Spectroscopy, Langmuir, vol.18, issue.9, pp.3555-3560, 2002.

S. S. Zhu and T. M. Swager, Conducting Polymetallorotaxanes: Metal Ion Mediated Enhancements in Conductivity and Charge Localization, Journal of the American Chemical Society, vol.119, issue.51, pp.12568-12577, 1997.

K. M. Silva, E. Hwang, W. K. Serem, F. R. Fronczek, J. C. Garno et al., ACS Appl. Mater. Interfaces, vol.4, pp.5430-5441, 2012.

M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts et al., Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs, Optical Materials, vol.42, pp.193-198, 2015.

R. Schlaf, P. G. Schroeder, M. W. Nelson, B. A. Parkinson, C. D. Merritt et al., Determination of interface dipole and band bending at the Ag/tris (8-hydroxyquinolinato) gallium organic Schottky contact by ultraviolet photoemission spectroscopy, Surface Science, vol.450, issue.1-2, pp.142-152, 2000.