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Abstract—Modulated metasurface (MTS) antennas can 

provide a broadside pencil beam at the frequency where the 

cylindrical surface wave (SW) wavelength matches the period of 

the impedance modulation. For modulations with constant 

period, the mismatch between the SW wavelength and the period 

imposes a limitation on the gain-bandwidth product. However, 

this limitation can be overcome by shaping the local period as a 

function of the radial distance. Doing so, we generate an annular 

active region on the antenna aperture, where the SW-to-

impedance interaction mainly occurs. Such active region moves 

from the antenna center to the circular rim as the frequency 

decreases. This paper shows that one can optimize the profile of 

the local periodicity function to obtain broadside pencil beams 

over large bandwidths, while preserving the flatness of the gain 

versus frequency response and a good stability of the phase 

center. The antenna performances so obtained are really unique 

for flat antennas based on printed technology. Finally, we present 

a simple formula for the product between average gain and 

bandwidth, which gradually blends into the already known 

expression for modulations with constant period. This formula 

establishes an absolute limit of the gain-bandwidth product, 

which only depends on the wavelength-normalized antenna 

radius at the central frequency. 

Index Terms—Broadband antennas, circular polarization, 

impedance boundary conditions, leaky waves, metasurface 

antennas, surface waves. 

I. INTRODUCTION 

PERTURE ANTENNAS based on modulated

metasurfaces (MTSs) [1]-[4] have recently drawn 

considerable attention. Among their advantages, stand out a 

low weight and low profile, a relatively easy and cheap 

fabrication process, and a simple feeding scheme. The 

radiation effect in this class of antennas arises from the 

interaction between a surface wave (SW) and the spatially 

modulated tensor reactance, which transforms the bounded 

SW into a leaky wave (LW). By properly choosing the spatial 

modulation of the reactance tensor entries, one can control the 
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leakage rate, the direction and polarization of the radiation and 

even the shape of the pattern. This ability to accurately control 

the aperture fields has led to circular apertures that satisfy a 

predetermined pattern mask [5]-[7], that maximize the 

aperture efficiency [5],[6],[8], or that provide either dual-

polarization [9],[10], multiple beams [11],[12] or dual 

frequency operation [13],[14]. 

Despite the flexibility shown by modulated MTS antennas, 

they have typically suffered from a relatively narrow 

bandwidth of gain. According to the results presented in [15], 

the main reason for the bandwidth limitation in modulated 

MTS antennas with a broadside beam is the mismatch between 

the periodicity d of the modulation and the dispersive variation 

with frequency of the SW wavelength. This variation is mostly 

due to the dispersion in the substrate and provokes a gradual 

reduction of the antenna gain at broadside.  

Let us consider the case of a circular MTS antenna with 

radius a and with free-space wavelength λ0 at its central 

frequency f0. Assuming a constant period d of the impedance 

modulation along the radius and an optimally chosen 

amplitude modulation index m (see for instance [16]), the 

circular aperture will provide a fractional bandwidth 

Δf/f0=1.2(a/λ0)(vg/c), where c is the speed of light in free 

space, and vg is the group velocity of the SW at f0 when it 

propagates on the MTS uniform average reactance. In 

addition, the aperture gain in absence of losses (directivity) is 

G=(2πa/λ0)2(a/λ0)/(a/λ0+2) [15]. In the case of electrically 

large antennas, the latter expressions provide a fractional gain-

bandwidth product approximately equal to 47(a/λ0)(vg/c). 

Typical values of Δf/f0, where Δf is the total bandwidth, go 

from 9% to 3% when the gain increases from 28.5 to 40 dBi 

(see Fig. 5 in [15]). 

Fig. 1.  Reference coordinate system and transparent reactance pattern for the 
broadband MTS aperture. Right inset: canonical problem of a flat SW 

wavefront that locally matches the modulation period. Left inset: printed 

elliptical elements used to implement the homogenized reactance.  
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The bandwidth performance can be significantly improved 

by adopting a period d that changes as a function of the 

aperture radius [17],[18]. The period d of the modulation in 

[18] increases exponentially along the radial distance to match 

the SW wavelength in different annular regions (Fig. 1). 

Therefore, the designed aperture behaves as an active region 

antenna, where each annular region radiates the desired 

broadside beam at a given frequency. Increasing or decreasing 

the frequency implies shifting the active region towards the 

center or the rim of the structure, respectively. Fig. 2 

illustrates the above described mechanism. It is important to 

note that the area outside the active region at a certain 

frequency barely interacts with the SW and it radiates very 

weakly.  

Fig. 2  Active regions at three different frequencies and example of radiation 

patterns (f1 < f2 < f3). 

Nonetheless, this exponential evolution of the period leads 

to a gain versus frequency response with ripples of 

approximately ±2 dB around its average value. Here, we show 

that it is possible to optimize the period function to get rid of 

these oscillations. Furthermore, it is seen for the first time that 

the phase center of these antennas is quite stable within the 

bandwidth. In order to reach this performance, we extend here 

the procedure in [18] to arbitrary period functions, optimized 

to have a flat gain response over a large bandwidth. To this 

end, we build on the technique described in [18] by 

introducing an accurate description of the transparent 

reactance, which is directly retrieved from the full-wave 

analysis of a local periodic canonical problem.  

This paper is organized as follows. Section II presents the 

formulation of the problem for exponential variation of the 

period. Section III illustrates the design process. Section IV 

presents full-wave results for two different flat gain broadband 

apertures. Finally, conclusions are drawn in Section V. 

II. EXPONENTIAL VARIATION OF THE RADIAL PERIOD

We model the MTS as a sheet transition tensor impedance 

boundary condition (IBC) [19]. The tensor X  relates the 

tangential electric field tE  averaged at z=0 with the 

discontinuity of tangential magnetic fields at the interface as 

( )0 0
ˆjt z z+ −= =

=   −E X H H
t

z (1) 

where ẑ  is the normal to the MTS plane. 

The analyzed apertures (Fig. 1) consist of circular regions 

with radius a. Hence, we will use a polar coordinate system 

centered in the aperture at the texture layer section, with radial 

distance ρ, azimuth angle , and unit vectors ˆ ˆ( ),  . A generic 

position in the aperture is given by ˆ ˆcos sin   +x y  and 

X  assumes the form [16], [18] 

( ) ( ) ( )( )
( ) ( ) ( ) 

ˆ ˆ ˆ ˆ  cos

ˆ ˆ ˆ ˆsin

X m m

m

  



  = +   +    −   

 −    +   +   

X I

(2) 

where X   is the average reactance, ,m m   are the radially-

dependent modulation indexes, and Φ(ρ) is the phase of the 

modulation given by 

( )
( )

( )
0

2
0d

d

 



 = + 

   (3) 

where d(ρ) represents the local period of the modulation in ρ. 

We point out that, by adopting a non-uniform periodicity 

function d(ρ) along the radial distance, the reactance X  in (2) 

takes the shape of a spiral that unwinds outward with a 

variable expansion rate that is dictated by (3). 

A. Average Gain and Bandwidth 

The authors treated in [18] the case m m =  with an 

exponential variation of the radial period of the kind 

( )
( )

( )
2 1 /1 2( )

1 1

a
d dd e d

e
e




 


  −−
 = +

 −
 

                 (4) 

where δ is a non-dimensional constant that defines the speed 

of the exponential growth, while d1 and d2 are the values that 

the local period of the modulation assumes in ρ=0 and ρ=a; 

i.e., 1 2(0),  ( )d d d d a= = . The rate of growth of the exponential 

function depends on , which optimal value was derived in the 

Appendix of [18] as . It was 

shown that this choice leads to the average antenna gain ([18], 

eq. 28) 

( )
2 2

min

3
2

1

4 35

2
1

ave

opt

a
G

d
d

a

 




 
− 

 

   (5) 

where σmin is the ratio between the SW wavelength and the 

free-space wavelength at the minimum frequency of operation 

(occurring approximately for ,min 1sw d  ). The antenna

bandwidth is comprised between the two frequencies for 

which the SW wavelength goes from the minimum value 

,min 1 1sw d =  to the maximum value ,max 2 2sw d = . The factors 

1,2  are larger than one and depend on the acceptable gain 

(with respect to the average gain) used to define the 

bandwidth. For instance, these factors approach unity for a -6 

dB gain bandwidth. 
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(a) 

(b) 

Fig. 3.  Gain versus frequency responses for two different MTS antennas with 

δ=δopt and: a) a=11.11 cm, d1=7mm and d2=13.7mm, (b) a=16.66 cm, d1=7mm 

and d2=13.7mm. The peak gains and the radiation patterns in the insets have 
been obtained by a full wave MoM solution for the homogenized impedance 

[19]. The average gain is Gave=29 dBi for a=11.11 cm with a 1dB in-band 

oscillation and Gave=30 dBi for a=16.66 cm with a 2dB in-band oscillation. 

Nonetheless, the choice of an exponential tapering is 

affected by an impairment: the gain oscillates around the 

average value with a ripple that increases for larger aperture 

radius. This undesired oscillation is related to the poor control 

of the aperture fields’ amplitude tapering, which is caused by 

the dispersivity of the surface. Fig. 3 shows two examples of 

broadband antenna, in both cases the substrate thickness is 

h=0.635mm and the relative permittivity is εr=6.15. A full-

wave Method of Moments (MoM) solver for homogenized 

IBCs [19] has been used to obtain the simulation results for 

these antennas with radius 11.11 cm (Fig. 3(a)) and 16.66 cm 

(Fig. 3(b)). Both antennas have the same d1 and d2 (see the 

caption in Fig. 3), and therefore the same bandwidth (22.2-

29.1 GHz). Using (5), one can predict an average gain Gave=29 

dBi for a=11.11 cm with 1dB in-band oscillation and Gave=30 

dBi for a=16.66 cm with 2dB  in-band oscillation. One can 

easily notice that the obtained gain is higher for the larger 

aperture, at the expense of larger oscillations with respect to 

the frequency. As expected, the side lobes exhibit higher 

levels at frequencies where the gain response resents a 

minimum of its oscillation. 

(c) 

(d) 

(e) 

Fig. 4. (a) Fabricated prototype with an inset showing the elliptical patches 

used to synthesize the impedance tensor. (b) Local periodicity as a function of 
the radial distance. (c) Directivity versus frequency response: measured (blue 

line), computed with the IBC-MoM in [19] (red line), computed by CST (green 

line). (d) Coordinates of the phase center versus frequency calculated from 
measurements using the method in [20]. (e) Comparison between the z 

components of the phase centers calculated using the measured patterns, CST 

analysis and IBC-MoM results. 

 . 
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B. Phase Center 

In some applications, the frequency stability of the phase 

center is an important property. The phase center (PHC) of 

these antennas is quite stable with frequency, since they are 

approximately symmetric and fed by a single monopole at the 

center. To illustrate this property, we have calculated the PHC 

for the antenna fabricated and measured in [18]. Fig. 4(a) 

shows the prototype and a zoom into the elliptical patches 

used to synthesize the IBC with the local periodicity function 

represented in Fig. 4(b). The PHC calculation follows the 

method described in [20], which is summarized here for 

convenience. First, the phase is obtained in the angular range 

of the main beam (at -3dB level). Next, the angular direction 

of the null of phase gradient is determined numerically. 

Finally, the PHC is found as the radius of the osculating 

spheres that match the phase gradient up to the second order 

derivatives around the direction of the null. It is worth noting 

that this procedure is different from those typically 

implemented in commercial softwares. In the latter, there is no 

search of the phase gradient null, and the osculating circle 

approximation is done directly on data of the main beam in a 

range symmetrically displaced with respect to the maximum 

amplitude value. This process has been found to provide 

significant errors in the phase center estimate even for small 

deviations between the maximum of the beam and the null of 

the phase gradient. 

The variation of the PHC position with frequency is 

reported in Fig. 4(d), and it is obtained from measurements; 

Fig. 4(e) shows the z-deviation of the phase center calculated 

using the measured patterns, the patterns obtained from a full 

wave analysis in CST and those computed with the IBC-MoM 

in [19]. The small PHC discontinuity at 27 GHz obtained from 

measurements is due to a change of standard gain horn in the 

measurement set up. One can also observe that the phase 

center fluctuation is around 10 mm over the 6 GHz bandwidth. 

III. ANTENNA SYNTHESIS FOR NON-EXPONENTIAL RADIAL

PERIOD 

One can deduct from (5) that, after setting the bandwidth, 

the average gain can be increased almost linearly with the 

radius. However, as shown in Fig. 3, when one increases the 

aperture size to get higher gains, the oscillation of the in-band 

gain becomes more pronounced. This effect is due to the 

insufficient control on the amplitude distribution of the “-1” 

indexed Floquet mode that one can get with the one-parameter 

() exponential periodicity function. To obtain a flat gain in 

frequency, we should replace the exponential period function 

d(ρ) in (4) by a more general function that results from an 

optimization scheme. 

Fig. 5. Flow diagram for the optimization process. All the steps of this 

procedure are described in detail in Sections III-A to III-E. First, Section III-A 

presents the setup of the algorithm, namely the average gain Gave for a given 
bandwidth and radius or the other way around. In section III-A, we also 

discuss the cost function C, the design of the periodicity function d(ρ) and the 

choice of the amplitude control frequency ωp. Section III-B describes the 
method adopted for the evaluation of the gain based on the analytical formula 

(8). Section III-C illustrates the method for the design of the modulation 

indexes of the MTS. Finally, sections III-D and III-E provide details on the 
synthesis of the metasurface by metal elements and on the procedure adopted 

to characterize the “-1” indexed Floquet mode attenuation and propagation 

constants within the MTS design bandwidth. 

Fig. 5 shows the flow diagram for the entire optimization 

process. The different steps of this process are represented by 

blocks in Fig. 5, these blocks are commented in the caption of 

Fig. 5 and described in detail in Sections III-A to III-E.  

A. Optimization Scheme 

As a first step, it is necessary to choose an appropriate 

substrate for the MTS design. We note that such choice affects 

the selection of the printed elements composing the MTS 

texture, i.e., the elliptical patches shown in Fig. 1 and Fig. 

4(a). This selection allows one to fix the average transparent 

reactance X   in (2) at 
0 , which is defined as the in-band 

center frequency and is maintained invariant for all the 

iterations in the optimization process. Then, the dispersion of 

the wavenumber βsw is characterized for a SW propagating on 

the average transparent reactance X   in the band of interest. 

To that end, one may adopt a constant quasi-static capacitance 

0C and a linear variation of the MTS admittance 

( )01/ C  −  [21]. This approximation can be used for the 

initial choice of substrate and elements. Here, however, we 

use a more refined evaluation of βsw based on a full-wave 

periodic analysis [22]. 

The optimization process starts with the definition of the 

objective bandwidth comprised between the angular 

frequencies min  and max , the desired average gain 
aveG  and 

the acceptable gain oscillation within the antenna bandwidth. 

Here, we will assume a ±1 dB of oscillation. The objective 

bandwidth imposes the maximum period d2 (at the periphery 
 X  
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of the aperture) and a minimum period d1 (in the feed region). 

The values d2 and d1 are defined to match the maximum and 

minimum SW wavelengths at the minimum and maximum 

frequencies min and, max respectively. As for the selection of 

aveG  we note that such value can be approximated using the 

following formula 

 
,

0 0 0

28.7 28.7
g ave

ave

vf a a
G

f c  


                    (6) 

where f0 is the antenna central frequency, λ0 is the 

corresponding free space wavelength, and ,g avev  is the integral 

average of the group velocity associated with ( )X    over 

the bandwidth. This relation, although not relying on a 

rigorous basis, gradually blends into the formula given in [15]1 

for modulated MTS antennas with a constant period and 

optimized to provide a maximum gain.  

Next, one selects a set of N equally spaced frequencies fn (or 

angular frequencies ωn) within the bandwidth, and associates 

to each frequency the SW wavelengths values λsw,n=2π/βsw,n as 

predicted from the SW dispersion curve. We will refer to ωn  

as phase control frequencies. Each λsw,n is assigned to a given 

value of the radial coordinate ρn so to construct the periodicity 

function d(ρ). Later on, we describe the procedure followed to 

determine the positions ρn in the optimization algorithm. It is 

important to bear in mind that just adapting the shape of the 

function d(ρ) will not be sufficient to get a flat frequency 

response. This is due to the difficulty of controlling the 

amplitude of the radiating “-1” indexed Floquet mode over 

large bandwidths. Therefore, in conjunction with the set of ρn, 

it is important to choose an amplitude control frequency ωp. A 

constant amplitude power distribution is imposed at ωp, which 

can span over a predefined frequency range (typically the 

entire design bandwidth). Such frequency ωp can be changed 

at each iteration within the same optimization process until an 

optimal value is found. The initial value of ωp is normally 

selected as the in-band center frequency ω0. Further details of 

this process are provided in Section III-C.  

At each iteration of the optimization procedure the cost 

function is defined as the average distance between the 

calculated gain ( )iG   (where i are in-band equispaced 

frequency samples at which the antenna gain is calculated) and 

the objective constant average gain Gave, namely  

( )
.

i ave

i
ave

G G
C

G

 −
=              (7) 

We emphasize that the gain ( )iG   depends on the control 

frequency ωp, at which the profile of the aperture amplitude 

distribution is set up as uniform (see also section III-C).  

In the optimization process we assume that each frequency 

fn is associated with the center of the n-th active region, which 

is located at the radial control point ρn. In this n-th active 

1 We note that the formula rigorously derived in [15] has a coefficient 

different from the one in (6), 47 instead of 28.7. However, the coefficient in 
[15] is referred to a gain decay of -3dB, while here we refer to a +/-1 dB 

oscillation with respect to the average gain, which implies a different constant. 

region, λsw,n will match the value of the periodicity function 

d(ρn). Thus, the periodicity function d(ρn) is determined by 

imposing d(ρn)=λsw,n. As initial guess of the optimization 

procedure, we assume that the control points ρn are equispaced 

along the radius. At each iteration of the optimization 

algorithm, both the position of the control points ρn and the 

amplitude control frequency ωp are adaptively modified along 

the radius and on the relevant frequency range, respectively. A 

swarm optimization search is used to maximize the flatness of 

the frequency response according to (7). We also point out 

that, at any iteration, the control points positions ρn do not 

change their increasing order with n to ensure that d(ρ) 

possesses a monotonically increasing functional dependence 

with ρ. 

In the following, the subscript n is understood and 

suppressed when describing the set of phase control 

frequencies 
n , whereas we will maintain the subscript p for 

the amplitude control frequency ωp. 

B. Calculation of Gain 

To calculate the cost function according to (7), it is 

necessary to compute the gain as a function of the frequency at 

each step of the optimization process. To this end, we use the 

flat-optics based formula for the gain [8] 

( )
( )

( )

2
( , )

2
0

2

0

,
8

,

a j

a

S e d

G
S d

    



    



=



(8) 

where S(ρ,ω) in (8) is the power density function per unit 

surface and  

( )
0

( , ) ( ) sw sw d


         =  − −    (9)

is the phase of the “-1” indexed modal field component of the 

adiabatic Floquet wave expansion [16]; Φ(ρ)  in (9) represents 

the reactance phase provided by (3), and Δβsw accounts for an 

incremental deviation of the SW wavenumber βsw due to the 

reactance modulation around its average value X  . The latter

is determined as in [23] by solving the periodic canonical 

problem that locally matches the local period determined as 

explained in Section III-A (see the right inset of Fig. 1). 

C. Estimate of the MTS Impedance at the Amplitude Control 

Frequency  

The gain presents a frequency dependency due to both the 

aperture field power density S(ρ,ω) and the phase (,) in 

(9). This dependency originates from the dispersivity of the 

metasurface.   

The in-band amplitude of the aperture fields is controlled by 

adaptively changing the frequency ωp. At this frequency, the 

power density distribution of the “-1” indexed mode is 

imposed as uniform on the aperture. In particular, we enforce 

that S(ρ,ωp) is a uniform function with a rapid zero drop-off at 

the edge and close to the source. The analytical expression of 

S(ρ,ωp) is given in [18], eq.(31). From S(ρ,ωp), one can 

directly retrieve the local attenuation constant α(ρ, ωp) of the 

 . 
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“-1” indexed Floquet mode as 

( )
0

( , ) / 2
,

1
( ', ) ' '

2

p

p

sw p

S

P S d


  
  

   


=

− 
(10) 

where Psw is the power associated to the SW. Such 

information on α(ρ,ωp), see Fig. 5(b) in [18], combined with 

the solution of a local canonical problem [23] allows one to 

determine the relevant modulation indexes m  that best match 

the α(ρ,ωp) profile obtained by (10). The association between 

α(ρ,ωp) and ( )m   and d(ρ) is visualized in Fig. 6.

Fig.6. The colored surface represents the solution for  of the local canonical 

problem for several modulation indexes m and periodicity values d at the 

amplitude control frequency ωp. For every periodicity and its corresponding 

radial distances ρn one selects the modulation index that provides the desired 

α(ρn,ωp) value. All these α(ρn,ωp) are represented by the yellow dots. 

The successive step consists in finding α(ρ,ω) and 

Δβsw(ρ,ω) as discussed in the section III-D. Finally, by using 

α(ρ,ω) we can compute S(ρ,ω) as a function of the frequency 

ω from the inversion formula of (10) 

( ) ( )( )
0

1
( , ) 2 , exp 2 ', ' .

2

SWP
d



        
 

= −    (11) 

We note that by changing the control frequency p  at 

which S(ρ,ωp) is designed, also changes S(ρ,ω) for any other 

in-band frequency.  

D. Estimate of the MTS Impedance at any Frequency 

In order to evaluate the functions α(ρ,ω) and Δβsw(ρ,ω) for 

any ω (see the next section III-E), it is first necessary to 

characterize the reactance tensor ( )ρ,ωX  at any frequency  

from the knowledge of ( )pρ,ωX at p. To this end, the 

surface is synthesized by locally periodic metallic patch 

elements through a database.  

This element synthesis process relies on a least-square error 

(LSE) minimization at the amplitude control frequency ωp. 

We note that to reduce the time required to synthesize the 

reactance tensor at each iteration, we exploit the azimuthal 

dependence of X  in (2), which is simply linear. Therefore, the 

elements are designed only along the 0 =  direction, instead 

of on the entire aperture. The reactance tensor for other values 

of   can then be easily recovered by straightforward algebraic 

relations. 

After obtaining the geometry of the patches at p, we use 

the in-band reactance database of the synthesized metal 

elements at   to determine ( )ρ,ωX . This is performed by 

adopting a periodic MoM solver [22] that uses Rao-Wilton-

Glisson (RWG) basis functions to discretize the MTS 

constitutive elements. The database is built up by assuming 

that each patch is immersed into a periodic environment 

constituted of identical elements arranged according to the 

periodic lattice. The analysis of this homogeneous structure, 

which is extremely fast, is repeated once for every  to 

construct a database that associates the entries of the 

anisotropic reactance tensor ( ), p X  to different angular 

frequencies  and unit-cell geometries along . The extraction 

of the  −dependent transparent reactance tensor relevant to 

each element is performed using the MoM matrix with the 

method described in [22]. It is interesting to note that, for the 

particular case of the elliptical patches, this operation is 

carried out using the quasi-analytical formulation in [24]. To 

illustrate the output of this process, Fig. 7 shows the evolution 

of the Xρρ component of the reactance tensor X at some 

frequency points within the design bandwidth. 

Fig.7. The color lines represent the X component of the reactance tensor 

( )ρ,ωX  for different in-band frequencies ω and along the 0 =  direction. 

The X component is evaluated on a few frequency samples within the design 

bandwidth of the aperture. 

Afterwards, by using the curves in Fig. 7 it is 

straightforward to reconstruct for each element (see the inset 

on the left of Fig. 1) the actual variation with frequency of the 

synthesized modulation indexes and of the average reactance 

( )X   . It is worth noting that even if the modulation indexes 

ρm  and φm  are designed to be equal at the amplitude control 

frequency p (see section III-C), these two synthesized 

functions mρ(ρ,ω) and mφ(ρ,ω) may slightly differ at other 

frequencies . 

E. In-band Relationship between Modulation Indexes and 

Leakage/Propagation Parameters 

To complete a full iteration of the optimization loop, one 

should also find for every frequency  the relation between 

the synthesized modulation indexes mρ(ρ,ω), mφ(ρ,ω), the 
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leakage parameter α(ρ,ω) and Δβsw(ρ,ω). The parameters 

α(ρ,ω) and Δβsw(ρ,ω) represent the complex propagation 

constant deviation of the “0” indexed mode with respect to the 

wavenumber supported by the constant (non-modulated) 

average transparent reactance ( )X   .

For a given point on the aperture (0,0), such relation is 

obtained by using the modulation indexes mρ(ρ,ω), mφ(ρ,ω) 

and the transparent reactance ( )X    calculated in Sec. III-D 

(see Fig. 7). Using these inputs, one can solve the periodic 

canonical problem that locally matches a modulation with: 

average reactance ( )X   , modulation indexes mρ(ρ0,ω), 

mφ(ρ0,ω) and period d(ρ0) [23]. 

The explicit formulation of this canonical problem is 

provided in Sec. III of [23], and constitutes a generalization 

for tensorial impedance of the solution found by Oliner for 

Leontovitch modulated scalar boundary conditions. The latter 

formulation is given in [25]. In the scheme of Fig. 5, the 

database which represents the solution of the periodic local 

problem is formally represented through the functional 

dependence 

( ) ( ), ,
, , .sw X d

F m m


 
  = (12) 

More specifically (12) represents a database of α(ρ,ω) and 

Δβsw(ρ,ω) for every possible impedance modulation parameter 

(namely, , , ,X d m m   ) at every in-band frequency . 

After fixing the unit-cell size and the bandwidth of the 

antenna, both databases (the one for the printed elements in 

the band of interest and the mappings expressed by (12)) are 

calculated before starting the optimization process once and 

for all. Such information can be simply reused at any iteration 

of the optimization procedure at the relevant steps represented 

by the different blocks in Fig. 5. This renders the entire loop 

runtime quite fast (about 1 minute to evaluate 25 frequency 

samples at Ka-band for a 11.11cm radius aperture, on a 3.60 

GHz I7-Intel core machine). 

IV. NUMERICAL RESULTS

The optimization process described in Section III has been 

applied to design two broadband MTS antennas with 

a=11.11cm, and characterized by the following target 

bandwidth/average gains 

• Case 1: Bandwidth 23.5-27.5 GHz, average gain 29.3

dBi

• Case 2: Bandwidth 20.5-29.5 GHz, average gain 25.4

dBi.

Fig. 8(a) presents the obtained gains as a function of 

frequency: the blue and red lines represent case 1 and case 2, 

respectively. On the other hand, Fig. 8(b) shows the optimized 

non-uniform period of the impedance modulation, with the 

same correspondence of colors. The solid lines in Fig. 8(a) 

have been obtained by using the MoM analysis in [19] to 

simulate the ideal IBC obtained with the optimized variables 

at the end of the iterative process represented in Fig. 5. This 

process has required about one thousand iterations in both 

cases for converging to the optimal solutions represented in 

Fig. 8(a). The dashed lines correspond to a fast multipole 

method (FMM) analysis [6] of the structure synthesized by 

elliptical patches printed on a Rogers RO3006 substrate, with 

relative permittivity εr=6.15 and thickness h=0.635mm. In 

both configurations, the basic square unit cell has a 1.6 mm 

side length. The FMM solution uses the analytical basis 

functions introduced in [24]. We observe that the dashed and 

solid lines present a good agreement and that the global 

response is much less oscillating than for the curves shown in 

Fig. 3 and Fig. 4 for an exponential variation of the radial 

period. The oscillation of the gain is approximately ±1 dB 

around an average gain of 29.3 dBi and 25.4 dBi for case 1 

and case 2, respectively. Fig. 8(a) also shows a comparison 

between the performance of a broadband antenna designed 

with the proposed optimization method and a broadband 

antenna with an exponential variation of the periodicity 

function. The grey dot-dashed line in Fig. 8(a) represents the 

gain versus frequency response for the latter case; it has been 

obtained using the periodicity function in (4) with the same 

radius and values of d1, d2 (given in Fig. 8(b)) that characterize 

case 2 introduced above. The amplitude control frequency is 

fp=27GHz, as for the example in Fig. 3(a). From Fig. 8(a) it is 

clear that the gain response for case 2 (red line), obtained with 

the optimization algorithm in Fig. 5, is considerably less 

oscillating around its average gain Gave. The gain response of 

case 2 also features a larger bandwidth with respect to the 

design based on the exponential shape of the periodicity 

function. Besides, the peak aperture efficiency in case 1 (29% 

at 26 GHz, with peak directivity of 30dBi) is slightly higher 

than in the corresponding 11.11 cm design described in [18]. 

Fig. 9 presents the directivity patterns computed at various 

frequencies in one of the principal planes for case 1. All the 

sub-figures show a comparison between the co-polar 

components obtained with the MoM tool in [19] (solid blue 

lines) and with the FMM solver in [6] (dashed black lines). As 

for the cross-polar components, the solid green lines have 

been computed with the MoM analysis in [19] and the dashed 

red lines with the FMM solver [6]. The latter are obtained by 

implementing the optimized boundary conditions by printed 

elliptical patches. 

     (a) 

 . 
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    (b) 

Fig. 8. (a) Gain versus frequency responses for the two optimized antennas 

with 11.11 cm radius: case 1 (blue lines) and case 2 (red lines). The solid 
lines stand for full-wave analysis of the homogenized impedance with the 

MoM tool in [19], while the dashed lines correspond to the FMM simulation 

[6] of the apertures synthesized by elliptical patches. The dot-dashed grey 
line represents the gain versus frequency response obtained for a 11.11 cm 

radius antenna designed by the exponential periodicity function in (4) and 

the same values of d1 and d2 used in case 2, and an amplitude control 
frequency fp=27GHz, as in Fig. 3(a). b) Final distribution of the period as a 

function of the radial distance: blue line for case 1 and red line for case 2.  

The agreement is excellent for both components, and shows 

the broadside radiation over a broad bandwidth. It is 

interesting to note that by tailoring the profile of d(ρ) one can 

also obtain dual-frequency or multi-frequency responses, topic 

that will be separately treated in a future work. Finally, Fig. 10 

presents equivalent comparisons relevant to the case 2. 

We also note that, for some frequencies, the patterns shown 

in Fig. 9(a) and Fig. 10(c) present side-lobe levels higher than 

-10dB (around -8dB). This effect is mainly due to two factors. 

The first one arises from the annular shape of the active 

regions, in particular those near the rim of the aperture (that 

radiate at lower frequencies within the band of interest). 

Indeed, the Hankel transform of an annular region with 

uniform amplitude presents higher side-lobe levels than a 

circular region with equivalent area. The second factor 

emerges from the radiative effect, even if weak, of the annular 

regions adjacent to the active one, which radiate minor beams 

off-broadside. 

In this regard, we point out that the cost function defined in 

(7) for the proposed optimization algorithm includes no 

specific constraints on the side-lobe level. As a future research 

line, one may consider the control of the side-lobe level in this 

class of antenna. To that end, one can include specific 

constraints on the cost function or use different power density 

distribution profiles to mitigate the weak radiation coming 

from non-active rings.   

Fig. 9. Directivity patterns for the broadband MTS in Fig. 8(a) (case 1) at (a) 

23, (b) 25 and (c) 27 GHz. The blue solid lines and the green solid lines 
represent the RHCP and the LHCP components calculated with MoM 

technique in [19]. Black dashed lines and the red dashed lines represent the 

RHCP and the LHCP components calculated with the FMM tool in [6]. The 
MTS is implemented by elliptical elements, as in Fig. 4 (a). 

 . 
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Fig. 10. Directivity patterns for the broadband MTS in Fig. 8(a) (case 2) at (a) 

20 GHz, (b) 24 GHz, (c) 26 GHz, (d) 28.6 GHz. The blue solid lines and the 

green solid lines represent the RHCP and the LHCP components calculated 

with MoM technique in [19]. Black dashed lines and red dashed lines 

represent the RHCP and the LHCP components calculated with the FMM tool 

in [6]. 

V. CONCLUSIONS 

A design method has been presented for modulated 

metasurface antennas able to provide a nearly flat gain 

response over broad bandwidths. In one of our previous work, 

we adopted an exponential shape for the radial period d(ρ) of 

the modulated reactance, which led to a quite high oscillation 

of the in-band gain. In this work, we introduce an accurate 

formula for the gain-bandwidth product, and overcome the 

gain oscillations and the bandwidth limitation by optimizing 

the shape of the function d(ρ) and by introducing an amplitude 

control frequency. 

On the one hand, we rely on an accurate description of the 

SW dispersion to optimize the periodicity function d(ρ). This 

function is defined by assigning to a set of radial positions 

periodicity values comprised between the maximum and 

minimum SW wavelengths at the minimum and maximum 

frequencies. These radial positions change at each iteration 

and so does the shape of d(ρ). On the other hand, we also 

control the amplitude of the “-1” indexed mode at each 

iteration. To that end, the optimization algorithm detects the 

optimal amplitude control frequency fp where the “-1” indexed 

power density profile should be quasi-uniform. By including a 

variable amplitude control frequency, one obtains a more 

efficient illumination of the aperture rim. Therefore, it is 

possible to further extend the bandwidth to lower frequencies 

of operation. We have used the proposed technique to design 

two different antennas. Both designs demonstrate the 

possibility for trading-off bandwidth for gain without 

sacrificing the flatness of the frequency response. Future work 

will include reducing the relatively high sidelobe levels in this 

class of antennas.  
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