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Alkene as Hydrogen Trapper to Control the Regio-Selective Ruthenium(II) 
Catalyzed ortho C-H Silylation of Amides and Anilides 

Qiao Lin,a Zirui Lin,a Mingxing Pan,a Qiaojin Zheng,a Hui Li,a Xiuwen Chen,a Christophe Darcel,b*  

Pierre H. Dixneuf,b* and Bin Lia,b*  

A convenient and practical pathway to versatile silylated amides and 
anilides is described via efficient and selective ruthenium(II) 
catalyzed ortho C-H silylation. Both amides and anilides were 
successfully silylated with good functional group tolerance and high 
regioselectivity. Different alkenes as the hydrogen acceptors played 
a crucial role for these two catalytic systems. Unexpectedly, two 
pathways for RuHCl(CO)(PPh3)2/KOAc catalyzed C-H silylation 
involving 5-membered ruthenacycle with arylamides and 6-
membered ruthenacycle with arylanilides, take place depending on 
the nature of the alkene as hydrogen trapper.  

Development of efficient regioselective C-H silylation reactions to 
introduce a reactive silyl group into various organic molecules has 
an important value because organosilane compounds are important 
structural units existing in drug development, advanced material,1 
and life sciences.2 Such silylated derivatives are also valuable key 
synthetic intermediates for chemical transformations.3 Recently, 
there has been a growing interest on the application of 
organosilicon compounds such as disila-AM580, TMS-phenylalanine, 
and asparagine mimic in medicinal chemistry.4 Compared to the 
classical electrophilic silylation with TMSOTf or TMSCl reagents, 
direct C-H bond silylation has been shown to be a straightforward 
method to synthesize functional organosilicon compounds owing to 
their atom- and step- economy.5 On the other hand, the direct 
silylation of C-H bonds is highly useful to afford reactive C-Si bonds 
allowing important further transformations, such as C-C, C-O, C-N 
and C-X bond formation, which cannot be obtained directly via 
classical metal catalyzed C-H bond functionalization.5b 

In recent years, pioneer examples of transition metal catalyzed 
ortho C-H silylations using oxygen,6 amine,7 imine,8 phosphine9 and 

N-containing heterocycles10 as directing groups have been explored 
involving a five-membered cyclometallation mechanism (Scheme 
1a), which is known to be both kinetically and thermodynamically 
favored by contrast to its six-membered counter parts.11 However, 
only few reports12 describe the direct regioselective synthesis of 
silyl-functionalized amides via intermolecular ortho C-H silylation 
with amide function as the directing group. Indeed, the C-H 
silylation of aryl amides is still challenging due to the competition 
between the C-H silylation of the aryl moiety and the 
hydrosilylation of amide carbonyl, as amides can be easily reduced 
to amines using hydrosilane as the reductant with transition metal 
catalytic system (Scheme 1b).13 By contrast, the more challenging 
ortho C-H silylation of aryl anilides [ArNHR1COR2] is expected to 
take place via a six-membered cyclometallation mechanism. In this 
context, the intermolecular C-H silylation of aryl amides and aryl 
anilides via the controlled formation of five- or six- membered 
cyclometallate intermediate via C-H bond activation has not been 
demonstrated so far. 
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Following our previous contributions on Ru(II) catalyzed C-H 
silylation of N-heterocycles,14 herein, we report an alkene 
controlled regio-selective aryl ortho C-H silylation of (hetero)aryl 
amides by using a RuHCl(CO)(PPh3)3/KOAc catalytic system in the 
presence of NBE = norbornene, and of (hetero)aryl anilides with the 
RuHCl(CO)(PPh3)3/KOAc catalytic system in the presence of MSE = 
2-methylstyrene (Scheme 1c). We show that the nature of the 
alkene added as a hydrogen acceptor, actually is crucial to perform 
the reaction, as it differently modifies the initial catalyst species. 

Table 1. Optimization of Ru(II)-catalyzed ortho C-H silylation of 
amide 1a [a]

+ SiEt3H
catalyst

solvent,
 additive, NBE

120
 oC, 20

 
h, N2

1a 2a

N

O

N

OSiEt3

A A

[a] amide 1a (0.5 mmol), Et3SiH (2.0 mmol), Ru catalyst (5 mol%), additive (0.25 mmol), 
NBE (2.0 mmol), solvent (2 mL), at 120 oC for 20 h, under N2. [b] at 80 oC. [c] Isolated 
yield of 2a. [d] Without NBE, 18% GC-yield of reduced amine was obtained. [e] Using 
MSE as the hydrogen acceptor. [f] Using TBE as the hydrogen acceptor. 

The positive influence of the acetate ligand on Ru(II) catalyst has 
first been demonstrated on attempts to perform the direct ortho C-
H silylation of amide 1a with Et3SiH in the presence of 4 equiv of 
NBE. (Table 1) Firstly, [RuCl2(p-cymene)]2 catalyst has been shown 
to be efficient for sp2 C-H arylation15 and alkenylation reactions.16 
However, surprisingly, [RuCl2(p-cymene)]2 in the presence of KOAc 
was not effective for the ortho C-H silylation of amide 1a (Table 1, 
entry 1). Ruthenium complexes including RuCl2(2,2’-bipyridyl)3.6H2O, 
[RuCl2(COD)]n, and Ru3(CO)12 did not favor this C-H silylation of 
amide (entries 2, 5, 6). When ruthenium catalysts such as 
RuCl2(PPh3)3 or RuH2(CO)(PPh3)3 with KOAc were used, silylated 
amide 2a was generated in 43% and 21% yields, respectively 
(entries 3 and 4). A full conversion of amide 1a was finally observed 
in the presence of RuHCl(CO)(PPh3)3 / KOAc catalytic system in 
toluene (entry 7). Other additives such as K3PO4, KOtBu, KBF4, 
C6H5CO2K (entries 8-12), and solvents including xylene, DMF, NMP, 

THF, CH3CN (entries 13-17) could not give better results for this C-H 
silylation of amide. The absence of NBE also disfavours this C-H 
silylation of amide, but 18% GC-yield of reduced amine was 
obtained  (entry 18 and Scheme S1). Other hydrogen trapper such 
as 2-methylstyrene (MSE) and tert-butylethylene (TBE) could not 
give better results (entries 19 and 20). This result indicated that the 
addition of NBE is crucial to trap the generated hydrogen for the 
chemoselectivity of the reaction in order to avoid further reduction 
of amide and improve the yield of C-H silylation product of amide. 
No disilylated product was obtained under these reaction 
conditions, likely because of the decreasing reactivity of another 
ortho C-H bond of the silylated product after the first silylation. 
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Tertiary amide 1 (0.5 mmol), Et3SiH (2.0 mmol), RuHCl(CO)(PPh3)3 (0.025 mmol), KOAc 
(0.25 mmol), NBE (2 mmol), toluene (2 mL), at 120 oC for 20-36 h, under N2. Isolated 
yields. 

Scheme 2. Ru(II)-OAc catalyzed ortho C-H silylation of  arylamides. 

We subsequently investigated the effect of various tertiary 
amides on the efficiency of this ortho C-H silylation reaction 
(Scheme 2). Firstly, N-alkyl-N-phenyl tertiary amides bearing 
substituents at para position such as -Me, -OEt, -F groups led after 
20 h of reaction to the corresponding silylated tertiary amides in 
good yields (2a-2c). N,N-Ethyl-3-methylbenzamide was able to give 
the desired silylated tertiary amides in good yield (70%) but a longer 
reaction time (36 h) was required (2d). Moreover, this catalytic C-H 

entry catalyst additive solvent GC-yield (%) 

1 [RuCl2(p-cymene)]2  KOAc toluene - 

2 RuCl2(2,2’-bipyridyl)3.6H2O  KOAc toluene - 
3 RuCl2(PPh3)3  KOAc toluene 43 
4 RuH2(CO)(PPh3)3  KOAc toluene 21 
5 [Ru(COD)Cl2]n  KOAc toluene - 
6 Ru3(CO)12  KOAc toluene - 
7 RuHCl(CO)(PPh3)3  KOAc toluene 99(78c) 
8 RuHCl(CO)(PPh3)3 K3PO4 toluene 31 
9 RuHCl(CO)(PPh3)3 KPF6 toluene 23 

10 RuHCl(CO)(PPh3)3 KOtBu toluene - 
11 RuHCl(CO)(PPh3)3 KBF4 toluene 33 
12 RuHCl(CO)(PPh3)3 C6H5CO2K toluene 48 
13 RuHCl(CO)(PPh3)3 KOAc Xylene 68 

14 RuHCl(CO)(PPh3)3 KOAc DMF - 

15 RuHCl(CO)(PPh3)3 KOAc NMP 31 
16 RuHCl(CO)(PPh3)3 KOAc THF ---b 

17 RuHCl(CO)(PPh3)3 KOAc CH3CN ---b 

18 RuHCl(CO)(PPh3)3 KOAc toluene traced 

19 RuHCl(CO)(PPh3)3 KOAc toluene 42e

20 RuHCl(CO)(PPh3)3 KOAc toluene 35f
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silylation could also be applied to synthesize silylated N-heterocyclic 
amides (pyrrolidine, piperidine, and morpholine amides) (2f-2h), 
with 52-78% isolated yields. Furthermore, N-phenyl-N-methyl, N,N-
dibenzyl, N-morpholinyl 2-furoyl tertiary amides showed very good 
reactivities in the synthesis of silylated furan derivatives (2i-2k). 
Additionally, a 1j in 2 mmol scale experiment has been performed 
and the silylated product 2j was obtained in 83% yield (0.67 g). 

We next studied the tolerance and selectivity of the reaction of 
secondary amide derivatives (Scheme 2). Silylated secondary N-alkyl 
amides could easily be prepared through this RuHCl(CO)(PPh3)3 
/KOAc catalytic system. In particular, the silylated products bearing 
-Me, -OEt, and -CF3 substituents in para or meta position of N-tert-
butyl benzamide, N-n-propyl benzamide, or N-cyclohexyl 
benzamide, were also produced in 55-80% yields under similar 
conditions (2l-2q). The structure of compound 2m was confirmed 
by X-ray crystallography, confirming the regioselectivity of the 
transformation in ortho position of the directing group. Importantly, 
in the presence of an ester group in para position on the aryl ring, 
the reaction also proceeded selectively as no product resulting from 
the reduction of ester group was detected (2o). Analogously, this C-
H silylation also showed excellent reactivity to synthesize functional 
silylated furans containing secondary amides (2r-2u). 

The above described catalytic system has then been evaluated 
for the C-H silylation of anilide 3a which should proceed via a 6-
membered ruthenacycle, which is expected to be more difficult to 
silylate than the corresponding amide with formation of a 5-
membered ruthenacycle. However, only slight amount of silylated 
anilide 4a was observed. After variations of the hydrogen acceptors 
(TBE (tert-butylethylene), DTBP (Ditbutyl peroxide), TMBE (2,3,3-
trimethylbut-1-ene), NBD (norbornadiene), MSE) (Table 2), 
ruthenium complexes ([RuCl2(p-cymene)]2, RuH2(CO)(PPh3)3, 
RuHCl(CO)(PPh3)3), additives (KOAc, KOPiv, PhCOONa, PhCOOH), 
and solvents (toluene, NMP, DCE, 1,4-dioxane, heptane) (Table S2), 
the best obtained result was 60% of silylated anilide 4a when the 
reaction was conducted in the presence of RuHCl(CO)(PPh3)3 (5 
mol%), KOAc (50 mol%), MSE (2-methylstyrene) (4 equiv) in NMP at 
120 oC for 20 h (Table 2).  

Table 2. Optimization of RuH(Cl)(CO)L3 / KOAc / Alkene catalyzed 
ortho C-H silylation of anilide 3aa  

+ SiEt3H
RuHCl(CO)(PPh3)3

 
(5

 mol%)

NMP, KOAc, Alkene
130

 oC, 20
 
h, Ar

3a 4a

H
N

O

H
N

O

SiEt3

B B

entry alkene GC-yield (%) 
1 NBE 9 
2 TBE 29 
3 DTBP 9 
4 TMBE 14 
5 NBD 5 
6 MSE 53 
7 MSE 60b (57c) 

[a] anilide 3a (0.25 mmol), Et3SiH (1.0 mmol), RuHCl(CO)(PPh3)3 (5 mol%), KOAc (0.125 
mmol), alkene (1.0 mmol), NMP (0.5 mL), at 130 oC for 20 h, under N2.  [b] NMP (1 mL), 
120 oC. [c] Isolated yield of 4a. 

Importantly, the Ru(II)/KOAc catalytic system in the presence of 
MSE was broadly applicable and enabled to obtain differently 
substituted anilides 3 in moderate to good yields by chemo- and 
regio- selective monosilylations via a 6-membered ruthenacycle 
intermediate (Scheme 3). Thus, different N-acyl-anilides 3a-3f 

bearing alkyl groups at acyl position led to corresponding ortho 
silylated anilides using the  Ru(II)/KOAc/MSE C-H silylation system. 
Numerous substituents, such as -OMe, -Me, -OBz, -NMe2, -F, -
COOEt on the anilide ring (3g-3o) were tolerated leading to silylated 
anilides (4g-4o) in moderate to good yields. It is noteworthy that 
this C-H silylation catalytic system exhibited good regio-selectivity 
(4l and 4m at α-position) and chemo-selectivity (4o without 
reduction of ester moiety). Furthermore, pyridyl amide derivative 
3p could be easily silylated and 4p was isolated in 80% yield. 
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Anilides 3 (0.25 mmol), Et3SiH (1.0 mmol), RuHCl(CO)(PPh3)3 (0.0125 mmol), KOAc 
(0.125 mmol), MSE (1 mmol), NMP (1 mL), at 120 oC for 20 h, under N2. 
Scheme 3. Ru(II) catalyzed ortho C-H silylation of anilides 

Then, several hydrosilanes such as (Me)2PhSiH, Me(OMe)2SiH, 
Me2(OMe)SiH and (OMe)3SiH were evaluated with the tertiary 
amide 1j in the presence of 5 mol% of RuHCl(CO)(PPh3)3, 50 mol% 
of KOAc, and 4 equiv of NBE in toluene at 120 oC for 20 h. (Scheme 
4) However, only dimethyl(phenyl)silylated amide was obtained 2w
with a rather good isolated 64% yield, other hydrosilanes were not 
efficient in this catalytic system. Moreover, other hydrosilanes 
reacted with anilide 3g and could not give good results to obtain 
corresponding silylated anilides in the anilide silylation conditions. 
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[a] Tertiary amide 1j (0.5 mmol), hydrosilane (2.0 mmol), RuHCl(CO)(PPh3)3 (0.025 
mmol), KOAc (0.25 mmol), NBE (2 mmol), toluene (2 mL), at 120 oC for 20 h, under N2. 
Isolated yields. [b] Detected by GC. 

Scheme 4. Ru(II) catalyzed ortho C-H silylation of amide 1j with 
different hydrosilanes[a] 

To gain more information on the selectivity of the two catalytic C-
H silylation systems, we then performed the C-H silylation of  N-
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phenylbenzamide under two catalytic systems (Scheme 5). 40% 
yield of silylated amide 2v was obtained through 5-membered 
ruthenacycle pathway by using RuHCl(CO)(PPh3)3/KOAc/NBE 
catalytic system. However, no silylated product was obtained with 
the RuHCl(CO)(PPh3)3/KOAc/MSE catalytic system, which is likely 
due to the competition of C-H bond cleavage between amide ring 
bearing 5-membered ruthenacycle and anilide ring bearing 5-
membered ruthenacycle.  
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Scheme 5. Ru(II) catalyzed ortho C-H silylation of N-
phenylbenzamide 

The ease and reversibility of the ortho C-H/N-H bond cleavage 
was studied by H/D exchange experiments. First, the reaction of 3g 
in the presence of D2O (0.2 mL) was performed at 120 oC for 20 h. 
25% ortho D-deuterated of ortho arene C-H bond and 97% D-
deuterated of N-H bond were observed by 1H NMR. (Scheme 6, eq. 
1) However, the addition of 50 mol% of KOAc led to an increase of
H/D exchange at the ortho position (48%) under similar conditions, 
(Scheme 6, eq. 2) which indicated that KOAc plays an important role 
in promoting this C-H cleavage of amides by deprotonation.15d 
However, no positive result was obtained in 
RuHCl(CO)(PPh3)3/KOAc/MSE catalyzed C-H silylation of anilide 
system, likely due to the reaction sensitivity of D2O. 
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Scheme 6. Deuteration experiments. 

From a mechanistic point of view, the reaction of  
RuHCl(CO)(PPh3)3 with 2.4 equiv. KOAc in dichloromethane was 
performed at room temperature for 16 h, and a mixture of 
complexes Ru(OAc)2(PPh3)2 (major) and Ru(OAc)2(CO)(PPh3)2 (less 
than 5%) was obtained.17 Two 31P NMR signals were observed at 
63.1 ppm (s) (major) and 39.1 ppm (s), which are compatible with 
previous observation by Lynam.18 On the other hand, tertiary amide 
1j could successfully generate the silylated amide 2j in 98% GC-yield 
by using 5 mol% of the generated mixture of complexes 
Ru(OAc)2(PPh3)2 and Ru(OAc)2(CO)(PPh3)2 in the presence of NBE 
(Scheme 7). However, no silylated anilide product 4a was detected 
in the presence of Ru(OAc)2(PPh3)2 as the catalyst with 4 equiv of 
MSE in NMP at 120 oC for 20 h. These results indicated that the 
Ru(OAc)2(PPh3)2 complex acted as the active ruthenium catalyst 
only for aryl C-H silylation of amides via a 5-membered 
ruthenacycle pathway and only in the presence of NBE. 

Previous work by Murai showed the reaction of RuH2(CO)(PPh3)3 
with trimethylsilane to give the cyclometallate intermediate 
Ru(H)(o-C6H4PPh2)(PPh3)2(CO).19 Thus we reacted RuHCl(CO)(PPh3)3 
with 2-methylstyrene (MSE) under Murai conditions19 at 110oC for 3 

hours and the intermediate B1 was obtained (Scheme 5). The 
intermediate B1 corresponds to a mixture of RuCl(o-
C6H4PPh2)(CO)(PPh3) and RuCl(o-C6H4PPh2)(PPh3), which were 
detected by HR-MS.20 Then the B1 intermediate was successfully 
applied to C-H silylation of anilide 3a which gave 4a in similar GC-
yield than the ones obtained using RuHCl(CO)(PPh3)3 as the catalyst 
with additional MSE, while less than 5% yield of 4a was obtained 
without additional KOAc or MSE. These results indicate that the 
reaction between RuHCl(CO)(PPh3)3 and the sacrificial alkene could 
be the first step for the C-H silylation of anilide via a 6-membered 
ruthenacycle pathway, and that MSE does not play only the role of 
hydrogen acceptor but generates the first active species B1 via 
trapping of hydrogen.   
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Scheme 7. Controlled experiments. 

Based on the above results, we propose mechanisms for 
RuHCl(CO)(PPh3)3/KOAc/NBE C-H silylation of amides via 5-
membered ruthenacycle pathway, and
RuHCl(CO)(PPh3)3/KOAc/MSE C-H silylation of anilides via 6-
membered ruthenacycle pathway, as illustrated in Scheme 8. Two 
different types of active ruthenium species have been shown for 
the two proposed catalytic pathways for amide and anilide 
silylations. In the Ru-catalyzed C-H silylation of amide cycle, the 
active Ru(II)(OAc)2(PPh3)2 species A1 was in situ generated after the 
release of CO and one PPh3 from the reaction of RuHCl(CO)(PPh3)3 
with KOAc. Then the acetate assisted ortho C-H bond deprotonation 
should lead to the five-membered cyclometallate ruthenium 
intermediate A2. Next, following the oxidative addition of 
hydrosilane, reductive elimination leading to 2 and norbornylene 
insertion, norbornane elimination and the Ru(OAc)2(PPh3)2 active 
species can be regenerated for the next catalytic cycle. On the other 
hand, in the Ru-catalyzed C-H silylation of anilide cycle, 
RuHCl(CO)(PPh3)3 reacted with MSE smoothly and led to active Ru 
species B1, which would further generate six-membered 
intermediate B2 by acetate assisted ortho C-H bond deprotonation. 
The silylated anilide 4 should be finally obtained by oxidative 
addition, reductive elimination and MSE insertion, the 
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corresponding alkane was released and the active Ru species B1 
was regenerated for the next catalytic cycle. It is noteworthy that 
the MSE plays an important role to generate intermediate B1 and 
more faster than the reaction of RuHCl(CO)(PPh3)3 with KOAc in 
NMP, while Ru(OAc)2(PPh3)2 species would be first generated in the 
presence of NBE in toluene. 
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Experimental 
General Remarks. 1H NMR spectra were recorded in CDCl3 at 
ambient temperature on Bruker  AVANCE I 300 or 500 
spectrometers at 300.1 MHz or 500.1 MHz, using the solvent as 
internal standard (7.26 ppm). 13C NMR spectra were obtained at 75 
or 125 MHz and referenced to the internal solvent signals (central 
peak is 77.2 ppm). Chemical shift (δ) and coupling constants (J) are 
given in ppm and in Hz, respectively. The peak patterns are 
indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, 
multiplet, and br. for broad. GC analyses were performed with GC-
14C (Shimadzu) equipped with a 30-m capillary column (Supelco, 
SPB-5, fused silica capillary column, 30 M*0.25 mm*0.25 mm film 
thickness), was used with N2/air as vector gas. GCMS were 
measured by GCMS-7890A-5975C (Agilent) with GC-7890A 
equipped with a 30-m capillary column (HP-5ms, fused silica 
capillary column, 30 M*0.25 mm*0.25 mm film thickness), was 
used with helium as vector gas. HRMS were measured by MAT 95XP 
(Termol) (LCMS-IT-TOF).

 General procedure for C-H silylation of amides. 
Ru(PPh3)3(CO)HCl (0.025 mmol, 23.8 mg), amide (0.5 mmol), 
triethylsilane (2.0 mmol), KOAc (0.25 mmol, 25 mg), norbornylene 
(2.0 mmol, 188 mg) and toluene (2 mL) were introduced in a tube 
under N2, equipped with magnetic stirring bar and was stirred at 
120 oC. After 20 or 36 h, the conversion of the reaction was 
analyzed by gas chromatography. The solvent was then evaporated 
under vacuum and the desired product was purified by using a silica 
gel chromatography column and a mixture of petrol ether/ethyl 
acetate as eluent. 
General procedure for C-H silylation of anilides. 
Ru(PPh3)3(CO)HCl (0.0125 mmol, 11.9 mg), anilide (0.25 mmol), 
triethylsilane (1.0 mmol), KOAc (0.125 mmol, 12.5 mg), MSE (1.0 
mmol, 130 μL) and NMP (1 mL) were introduced in a tube under N2, 
equipped with magnetic stirring bar and was stirred at 120 oC. After 
20 h, the conversion of the reaction was analyzed by gas 
chromatography. The solvent was then evaporated under vacuum 
and the desired product was purified by using a silica gel 
chromatography column and a mixture of petrol ether/ethyl 

acetate as eluent. 

Conclusion 
In conclusion, we have described an efficient and high selective 
process using RuHCl(CO)(PPh3)3/KOAc catalytic system in the 
presence of sacrificial NBE for the ortho C-H silylation of both 
secondary and tertiary amides using HSiEt3 as the silylating reagent 
without reduction of amide moiety  via 5-membered ruthenacycle 
pathway. Furthermore, a regio-selective C-H silylation of anilides 
was also developed using a catalytic system based on 
RuHCl(CO)(PPh3)3 and KOAc in the presence of MSE as hydrogen 
acceptor, via a 6-membered ruthenacycle pathway. Various 
silylated amides and anilides bearing numerous tolerated functional 
groups were successfully synthesized in moderate to excellent 
yields. Two pathways for these Ru(II) catalyzed C-H silylations were 
proposed to rationalize the regioselectivity obtained. The 
“hydrogen acceptor” alkene played an important role to generate 
the catalytic species in addition to hydrogen acceptor properties for 
the regio-selective Ru(II) catalyzed C-H silylations of amides and 
anilides. 
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