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Array detector allows a resolution gain for confocal mi-
croscopy by combining images sensed by a set of pho-
tomultipliers tubes (or sub-detectors). Several methods 
have been proposed to reconstruct a high resolution 
image by linearly combining sub-detector images. To 
overcome the limitations of these techniques, we pro-
pose a new reconstruction method that takes the full 
stack of spatially reassigned detector signals as input. 
We show on both calibration slides and real data that 
our deconvolution method allows to achieve a better re-
construction performance in terms of resolution, image 
contrast, and spatial intensity homogeneity. The tested 
algorithms are available in an open source software. 

The principle of array detector confocal microscopy is to replace
the point detector by a set of sub-detectors circularly arranged
around a central detector [1] (Fig. 1). Accordingly, the optical
resolution is no longer determined by the size of a single pinhole
but depends on the relative positioning of sub-detectors, each
acting as a small pinhole and capturing a slightly different view
on the sample. With this array detector approach, more light
is collected and the reconstructed image has a higher signal-to-
noise ratio (SNR). Nevertheless the estimation of the high resolu-
tion image from sub-detectors is not straightforward. Since the
emergence of this technology, two categories of methods have
been investigated for image reconstruction: i) the sub-detector
combination methods [2–6] allow either a gain of contrast or
a gain of resolution but not both; ii) the deconvolution-based
methods are more sophisticated and allow both contrast and
resolution gain, but may create spurious artifacts.

In this Letter, we first review the sub-detectors combination
techniques and we describe a data-driven approach for auto-
matically estimating the weighting parameters. Second, we
propose an original deconvolution algorithm that estimates a

Fig. 1. Scheme of the array detector and image stack. The 32 sub-
detectors are hexagonal and arranged around the central sub-detector.
The dark blue (resp. light blue) circle highlights the group of N = 7
(resp. N = 19) central detectors. The detectors inside/outside the
circles are called "inner"/"outer" detectors.
———————————————————————————–

single deconvolved image directly from the array of low/high
frequency images. We show that it allows us to achieve a better
compromise in terms of resolution and signal reconstruction
when compared to existing methods.

The array detector we consider consists of 32 sub-detectors
arranged around a central sub-detector as illustrated in Fig. 1.
Each sub-detector has a diameter of 0.2 AU (Airy Unit). The first
inner ring grouping the N = 7 central detectors has a diameter
of 0.6 AU, the second inner ring grouping the N = 19 detectors
has a diameter of 1 AU, and the full detector has a diameter of
1.25 AU. Among the list of techniques that were analyzed, the
base-line method (pseudo-confocal (PC)) amounts to summing
N images as follows:

IPC(x) =
N

∑
i=1

Ii(x), (1)

where Ii(x), illustrated in Fig. 1 (right), denotes the fluorescence
intensity observed at the spatial position x ∈ Ω (Ω is the image
domain) sensed by the sub-detector with index i. If N = 7, 19
and 32, the resulting images are equivalent to confocal images
with a pinhole at 0.6 AU, 1 AU, and 1.25 AU, respectively. Note
that summing the N images enables to achieve an image with a
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higher contrast than a conventional confocal image. Since, image
scanning microscopy (ISM) technique [2, 3] has been proposed
to produce a higher resolution image. The principled approach
consists in reassigning the signal from each sub-detector to the
central detector as follows:

IISM(x) =
32

∑
i=1

Ĩi(x), (2)

where Ĩi(x) is the intensity at pixel x sensed by the sub-detector
i, spatially co-registered to the central detector i = 1. Later
on, virtual fluorescence mission difference (FED) [4, 5] has been
defined to create an high resolution image. Conventional FED
microscopy scans twice the sample, first with a point shape
illumination, and second with a donut shape illumination. Vir-
tual FED is similarly obtained by subtracting the "outer" ring of
sub-detectors to the "inner" sub-detectors:

IIFED(x) =
N

∑
i=1

Ii(x)− ε
32

∑
i=N+1

Ii(x), (3)

where ε > 0 is a subtraction factor and N is set to 7 or 19,
depending on the compromise made between intensity contrast
and spatial resolution. Finally, Li et al. [6] showed that, by
substituting the ISM image (2) to the sum of the N row detectors
as follows:

IISFED(x) = IISM(x)− ε
32

∑
i=1

Ii(x) with ε > 0, (4)

we can obtain a gain of about 12% in terms of resolution can be
achieved when compared to the original IFED method.

The performance of the so-called ISFED and IFED methods
depends on the calibration of the ε parameter in (3)-(4). In [5],
the authors showed that by setting ε = 0.3 yielded very sat-
isfying experimental results. Nevertheless, we experimentally
observed that ε should be adaptively adjusted according to SNR;
for low SNR values ε = 0.3 is appropriate, but ε must be in-
creased to 1.0 to accommodate high SNR values. These results
suggested the development of the following data-driven method
[7] to automatically set ε . As starting point, we considered the
following general formulation1 based on (3) and (4):

û(x) = Kh ∗
(

M2

∑
i=M1

Ii(x)− ε
N2

∑
i=N1

Ii(x)

)
with ε > 0,

= aI(x)− εbI(x),

(5)

where K refers to a 2D spatial convolution filter with a kernel size
h, and ∗ denotes the convolution operator. In (5), aI(x) = Kh ∗
∑M2

i=M1
Ii(x) is the sum of the detectors with indexes between

M1 and M2, and bI(x) = Kh ∗ ∑N2
i=N1

Ii(x) is the sum of the
detectors with indexes between N1 and N2. The kernel size h
is chosen very small to both slightly reduce noise and preserve
high frequencies. In [7], we considered the following local Stein’s
unbiased risk estimate (SURE) to optimally determine ε:

SURE(x) =
1
n ∑

y∈Ω(x)
(I1(y)− û(y))2 − σ2 +

2σ2

n
divI(û), (6)

where Ω(x) is a local spatial neighborhood centered at pixel x,
n is the number of pixels in Ω(x) (i.e., n = |Ω(x)|) assumed

1In the case of IFED, M1 = 1, M2 = N, N1 = N + 1 and N2 = 32; in the case of
ISFED, M1 = 1, M2 = 32, N1 = 1 and N2 = 32.

to be constant for all pixels in Ω, σ2 denotes the variance of
the assumed Gaussian noise, and div is the divergence of û wrt
{Ii}32

i=1. Furthermore, we defined the empirical SURE as the sum
of local SURE: SURE = ∑x∈Ω SURE(x). Solving ∂SURE

∂ε = 0
gives the closed-form solution (see [7], Supplementary Note):

ε =
∑x∈Ω

[
(N2 − N1)σ

2 − n−1 ∑y∈Ω(x)(I(y)− aI(y))bI(y)
]

∑x∈Ω n−1 ∑y∈Ω(x) b2
I (y)

.

(7)
The ISM, IFED and ISFED techniques are appealing as they

allow to improve resolution with simple calculus, without los-
ing too much frequency information. Nevertheless, these linear
methods are limited as the input images can contain subtle struc-
tural details and low weak signals. To overcome the current
limits of ISM, IFED, and IFSED methods, conventional decon-
volution algorithms such as Richardson-Lucy or Wiener that
take the ISM image as input, have been investigated in array
detector microscopy. In the remainder of the Letter, we will
denote ISM-RL (Richardson-Lucy) and ISM-W (Wiener) the two
corresponding methods. However, deconvolving the ISM image
is sub-optimal as the input image results from the merging of N
sub-detectors inducing the loss of subtle structural information
and high frequencies. As a remedy to this problem, we propose
to apply a performant deconvolution algorithm (SPITFIR(e) [8]),
directly on the native array data (that is the array detector). In
summary, SPITFIR(e) amounts to finding the image u that best
minimizes a global energy E(u, f ) composed of a data fidelity
term and a sparse-promoting regularization term Rρ(u) :

E(u, f ) =
1
2
‖Hu− f ‖2

2 + λRρ(u) (8)

Rρ(u) = ∑
x∈Ω

√
ρ2‖Hu(x)‖2

F + (1− ρ)2u(x)2, (9)

where f is the noisy and blurred image, H represents the point
spread function (PSF) (matrix form), u is the restored image,
and λ is a regularization parameter. In (9), ρ ∈ [0, 1] involved
in the sparse-promoting regularizer, is a weighting parameter
that balances the Hessian term ‖Hu(x)‖2

F used to encourage
smooth variations of the signal and the intensity term u that
"weakly", "moderately" or "strongly" encourages sparsity in the
restored image (see details in [8]). In practice, SPITFIR(e) was
successfully used for restoring multi-dimensional fluorescence
microscopy images corrupted by Poisson-Gaussian noise and
acquired with spinning disk confocal, STED, and multifocus
microscopy. Here, SPITFIR(e) is applied to the ISM image (i.e.,
f = IISM) to generate a deconvolved image (denoted ISM-S
(SPITFIR(e))). Nevertheless, this energy can be modified as
follows to take the 32 sub-detectors as input:

E(u, Ii) =
1
2

32

∑
i=1

wi ‖Hu− Ii‖2
2 + λRρ(u) (10)

where wi = Z−1 exp(−di/τ) > 0 is a weight and Z is a normal-
ization constant such that ∑32

i=1 wi = 1. We define di as follows:
di = dkl if i ∈ {k, · · · , l} where dkl is the averaged Euclidean dis-
tance (in pixels) of sub-detectors with indexes {k, · · · , l} to the
central detector. We considered four groups of sub-detectors as il-
lustrated in Fig. 1: {1}, {2, · · · , 7}, {8, · · · , 19}, and {20, · · · , 32}.
By setting τ = 3.0, twice more importance is given to (high-
frequency) "outer" sub-detectors {20, · · · , 32} than to "inner"
detectors {2, · · · , 7}. Thus, the so-called AD-S (Array Detector
- SPITFIR(e)) algorithm performs both the merging of multiple
images {I1, · · · , I32} and deconvolution at once.
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In our experiments, we used the SURE criterion to select an
optimal value ε (see (7)) to generate the ISFED and IFED images.
The underlying parameters (e.g., λ) of SPITFIR(e) are automati-
cally estimated from the noisy images as described in [8]. The
size of the PSF in (10) is selected in the range [1.0, · · · , 2.0] pixels
and set to 1.5 pixels by default. We applied the eight reconstruc-
tions methods PC, ISM, IFED, ISFED, ISM-RL, ISM-W, ISM-S and
AD-S to an image depicting ring shape object ("donut") taken
from the Argolight calibration slide, whose surface is known
to be spatially smooth. Figure 2(a) shows the high resolution
images obtained with each method. First, we can notice that
PC and ISM have high SNR and low resolution. The IFED and
ISFED images have low SNR due to sub-detector subtraction,
but a higher resolution than PC and ISM. At first glance, the
three deconvolution methods ISM-RL, ISM-W and ISM-S pro-
duced higher resolution images. Nevertheless, they are sensitive
to small intensity variations, and consequently the intensity of
the donut is not homogeneous. Finally, the AD-S algorithm
produced an image where the ring that appears to be visually
thinner and more homogeneous than the images resulting from
the deconvolution of the input ISM image. In each case, we
plotted 12 profiles across the donut separated by an angle of 15
degrees each (Fig. 2(b)). We can notice that the peaks correspond-
ing to PC and ISM are large and noisy. From the conventional
full width at half maximum (FWHM) criteria, the average thick-
ness of the donut is 323 nm and 313 nm with the PC and ISM
methods, respectively. The profiles obtained with IFED and IS-
FED methods appear to be very noisy. Nevertheless, the peaks
are thinner than before, and the average thickness of the donut
is 278 nm and 280 nm for IFED and ISFED, respectively. The
deconvolution methods that take the ISM image as input pro-
duced high resolution images with thinner and smoother peaks.
The resulting average thickness are 257 nm (ISM-RL), 275 nm
(ISM-W), and 254 nm (ISM-S). Finally, the AD-S algorithm pro-
vided the best results; the profiles are less noisy, thinner (average
thickness: 252 nm) and show a slightly lower variance around
the donut that the other deconvolution methods.

Furthermore, we applied the eight reconstruction methods
to an image depicting vertical line pattern from the Argolight
calibration slide. This pattern contains ten groups of lines where
the distance between lines decrease from 550 nm to 100 nm
with 50 nm steps (see Figure 3(a)). To estimate the spatial res-
olution, we measured the intensity gap (contrast) between the
maximum and minimum intensity profile for each line. With
this Argolight sample, it turns out that a contrast below 26.5%
means that objects at the line resolution cannot be distinguished.
The measured contrasts are plotted in Fig. 3(b). We got two
groups of methods, the methods including PC, ISM, and IFED
that cannot distinguish the lines closest to 350 nm and the meth-
ods that can distinguish the lines until 250 nm. Note that the
ISFED image has a resolution as high as those obtained with the
deconvolution methods, but is more noisy.

To evaluate the performance on real data, we first applied the
eight reconstruction algorithms to an image depicting mitochon-
dria in MCF7 cells expressing mito-GFP. In Fig. 4(a), ISFED and
the deconvolution methods provided the best results in terms of
resolution. However, the SNR is lower with the ISFED method.
Moreover, AD-S is more robust to noise than the other competing
deconvolution methods, and the resulting image has a higher
resolution. If we compare the intensity profiles along the yel-
low lines drawn in Fig. 4(a) and estimated by each method (see
Fig. 4(c)), we can notice that ISFED that produced the thinner
profiles but this profile is more noisy than the others. As before,

PC ISM IFED ISFED

ISM-RL ISM-W ISM-S AD-S

(a) High-resolution images estimated with the eight methods.

PC ISM IFED

ISFED ISM-RL ISM-W

ISM-S AD-S

(b) intensity profiles across the donut.

Fig. 2. High-resolution reconstruction obtained with the eight meth-
ods applied to the "donut" image from the Argolight calibration slide
(ZEISS Airyscan microscope). (a) high resolution images. (b) Twelve
profiles are plot across the donut taken at 15 degrees from each other.
The x axis represents the distance in microns to the ring center.
———————————————————————————–

AD-S gives the best compromise between SNR and resolution,
followed by ISM-S, ISM-RL, ISM-W and further IFED, ISM and
PC. Furthermore, we applied the reconstruction methods to an
image depicting intestinal microvilli from an adult C. elegans
worm expressing the ERM-1::mNeonGreen fusion protein (ERM-
1 is specifically localized in intestinal microvilli, see Fig. 4(b)).
The ISFED and deconvolution methods better enhance the 100
nm large microvilli. Moreover, in Fig. 4(d), the cross-section
profiles along the yellow lines drawn in Fig. 4(b) suggest that
AD-S better removes the background (deeper curve).

Finally, we performed another experiment using a C. elegans
intestinal microvilli sample to quantitatively evaluate the meth-
ods sensitivity to SNR. The images have been captured with
four different pixel dwell times, corresponding to four different
acquisition speeds. For high pixel dwell time, the acquisition
speed is low and the SNR is then high; when the pixel dwell
time decreases, the acquisition speed increases and the SNR
decreases. Figure 5 (left) shows the PC images for two acqui-
sition speeds (speeds #1 and #4) in which the SNR decreases
when the speed increases. We applied the eight reconstruction
methods in each case and we evaluated the intensity contrast



(a) (b)

Fig. 3. Resolution measurement using the vertical line pattern. (a)
image of the pattern. From left to right, lines are spaced by 550, 500,
450, 400, 350, 300, 250, 200, 150, and 100 nm. (b) Contrast in percentage
of intensity between maximum intensity and minimum intensity for
each of the 10 lines patterns profiles. The black dashed line shows the
resolution measurement threshold.
———————————————————————————–

(in percentage) between microvilli (see plots in Fig. 5 (right). We
notice that the contrasts obtained with the PC and ISM methods
are below 26.5%, suggesting that we cannot distinguish the mi-
crovilli. With the IFED method, we can distinguish the microvilli
only for speed #1. With the ISFED method, the microvilli can be
separated for speeds #1 and #2. Unlike the linear methods, the
deconvolution methods allows to resolve the microvilli for the
four scanning speeds. As before, the AD-S method produced
the best contrasted images when the SNR decreases.

In this Letter, we compared the main techniques to recon-
struct a high resolution confocal image from array detectors,
with a new array detector deconvolution method. Our AD-S
method outperforms the state-of-the-art methods in terms of
resolution and robustness to noise. The performance is still high
provided the sub-detectors are satisfyingly co-registered and
the PSF is approximately modeled by a Gaussian model. In this
Letter, the comparison was performed on 2D images, but all
the eight methods have been implemented to process 2D and
3D images. As for the computational performance, the linear
methods take less than one second of computing time (core i7
CPU) to process a 512× 512 image and 32 sub-detectors. The
deconvolution methods are twice as slow (about 2 seconds).
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Disclosures. The authors declare no conflict of interest.
Data availability. Data acquisition was performed at the MRic Mi-
croscopy Rennes Imaging Center (France) with a confocal (Zeiss LSM
880) with airyscan microscope. The underlying results presented in this
Letter may be obtained from the authors upon reasonable request.
Software availability. The software (Fiji plugin) that gathers the tested
methods is available here: https://team.inria.fr/serpico/airyscanj/.
Supplemental document. See Supplement for supporting content.
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PC ISM IFED ISFED

ISM-RL ISM-W ISM-S AD-S

(a) MCF7 cells expressing mito-GFP.

PC ISM IFED ISFED

ISM-RL ISM-W ISM-S AD-S
(b) C. elegans sample expressing the ERM-1::mNeonGreen fusion protein.

(c) MCF7 cells. (d) C. elegans sample.

Fig. 4. Reconstruction results obtained with the eight methods. (a)
high resolution images depicting MCF7 cells expressing mito-GFP
(labelling mitochondria). (b) High-resolution images depicting C.
elegans sample expressing the ERM-1::mNeonGreen fusion protein.
(c)-(d) Intensity profiles along the yellow line in (a) and (b). The x axes
are graduated as the distances to the line centers in microns.
———————————————————————————–

Speed #1 Speed #4

Fig. 5. (left) Images of a C. elegans sample expressing the ERM-
1::mNeonGreen fusion protein using two different scanning speeds
from slow (Speed #1) to fast (Speed #4). (Right) Plots of the intensity
contrasts in percentage between microvilli for each method.
———————————————————————————–
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SUPPLEMENTARY FIGURES

PC ISM

IFED ISFED

ISM-RL ISM-W

ISM-S AD-S

Supplementary Fig. 1: Reconstruction results obtained calibration slide containing vertical fluorescent lines
spaced by 550, 500, 450, 400, 350, 300, 250, 200, 250, and 100 nm.
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Supplementary Fig. 2: Images of a C. elegans sample expressing the ERM- 1::mNeonGreen fusion protein
using using two different scanning speeds from slow (Speed #1) to fast (Speed #4). The profile line location
are marked with green patches on the PC images. The intensity profiles along the yellow lines are plotted in
the right column. The x axes are graduated as the distances to the line centers in microns.



APPENDIX

A. Estimation of the optimal subtraction factor ε

The IFED and ISFED methods are based on the subtraction of two sets of detectors. To generalize the idea,
we define the reconstructed image û(x) at pixel x ∈ Ω as:

û(x) = Kh ∗ (

M2∑
i=M1

Ii(x)− ε
N2∑
i=N1

Ii(x)) = aI(x)− εbI(x), (1)

where h is the bandwidth of the convolution filter K and ∗ is the convolution operator. In what follows, aI(x) =

Kh ∗
∑M2

i=M1
Ii(x) is the sum of the detectors with indexes between M1 and M2, and bI(x) = Kh ∗

∑N2

i=N1
Ii(x)

is the sum of the detectors with indexes between N1 and N2, and ε > 0 is a constant. In the case of IFED,
M1 = 1, M2 = N , N1 = N + 1 and N2 = 32, and in the case of ISFED, M1 = 1, M2 = 32, N1 = 1 and N2 = 32.
The bandwidth h is chosen very small to slightly reduce noise while preserving high frequencies.

Let us consider a neighborhood Ω(x) ⊂ Ω centered at point x and let us denote n = |Ω(x)| the number of
pixels in Ω(x), assumed to be constant in the image image Ω. We propose to estimate the subtraction factor ε
by using the local Stein’s unbiased risk estimate (SURE ) of û(x) by considering I1 as the reference image:

SURE(x) =
1

n

∑
y∈Ω(x)

(I1(y)− û(y))2 − σ2 +
2σ2

n
divI(û), (2)

where σ2 is the variance of the assumed white Gaussian noise and

divI(û) =
∑

y∈Ω(x)

N∑
i=1

∂û(y)

∂Ii(y)
(3)

is the divergence of û. Since aI(y) and bI(y) have simple forms, it follows that:

divI(û) =
∑

y∈Ω(x)

(M2 −M1)− ε(N2 −N1). (4)

The SURE risk is then written as:

SURE(x) =
1

n

∑
y∈Ω(x)

(I(y)− aI(y) + εbI(y))2 − σ2 + 2σ2(M2 −M1 − ε(N2 −N1)). (5)

Furthermore, we define the empirical SURE as the sum of local SURE as:

SURE =
∑
x∈Ω

SURE(x) (6)

which is an unbiased estimator of the Mean Square Error (MSE), that is:

E[SURE] =
∑
x∈Ω

E[SURE(x)] =
∑
x∈Ω

E[(û(x)− u(x))2] = E[‖û− u‖2]. (7)

It is worth noting that, when the neighborhood Ω(x) is reduced to a single pixel x, the empirical SURE is
nothing else that the conventional SURE on domain Ω. It follows that solving ∂SURE

∂ε = 0 gives the following
closed-form solution for ε:

ε =

∑
x∈Ω

[
(N2 −N1)σ2 − n−1

∑
y∈Ω(x)(I(y)− aI(y))bI(y)

]
∑
x∈Ω n

−1
∑
y∈Ω(x) b

2
I(y)

. (8)
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