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Abstract

Macroscopic models for di�usion and heterogeneous reversible reaction of two
species in porous media are developed by using coupled homogenization technique
and spectral approach. Three representative cases related to the order of magni-
tude of the macroscopic Damköhler number DaL, namely predominating reaction,
di�usion-reaction of the same order and dominating di�usion, are considered. The
concentrations are developed as time series in an eigenfunctions basis associated
with periodic spectral problems formulated in the unit-cell, thus forming a new mi-
croscopic problem to be homogenized. Such an approach represents a powerful tool
to upscale di�usion-reaction microscopic problems, especially for high Damköhler
number values where classical asymptotic development fails. It enables to capture
the physics at very short times, when the characteristic time of reaction involved is
much faster than the di�usion one. This work allows us to formulate the complex
macroscopic laws describing the heterogeneous di�usion/reaction problem for two
species in high Damköhler number regime.
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1. Introduction

Reactive mass transport in porous media, which is the subject of many studies in
scienti�c and engineering disciplines, is a coupled multiscale and multi-physics pro-
cess. For example, convection-di�usion-reaction of multi-species in a poroelastic
tissue, coupling mechanical and reactive mass transfer problem has been recently
examined [1]. Slightly non-isothermal di�usion-reaction problem in a catalyst pel-
let was studied in [2].
To overcome the time and computational resources challenge of pore-scale mod-
eling, the most suitable way is to upscale the local problem and to consider the
porous medium as a continuous domain. Several approaches exist to perform such
upscaling: method of moments [3, 4], periodic homogenization technique [5, 6],
homogenization by two-scale convergence [7, 8], volume averaging technique [9].
In this work, the problem of di�usion in the �uid phase and heterogeneous �rst-
order chemical reaction at the �uid/solid interface is investigated. In the literature,
the convection and di�usion are frequently considered for the transport problem.
However, the main challenge for the upscaling procedures stems from the heteroge-
neous reaction. Three cases (related to the order of magnitude of the macroscopic
Damköhler number DaL), namely predominating reaction, di�usion-reaction of the
same order and dominating di�usion, can be distinguished. In the linear case with
a small Damköhler number, all upscaling techniques give the standard result of a
macroscopic di�usion-reaction equation characterized by a macroscopic di�usion
tensor solely depending on the geometry and microscopic di�usion coe�cients, and
a reactive source term depending on the speci�c surface area, reaction rates and
concentrations [9].
Speci�c applications of this problem can be found in many �elds. For example,
in electrochemical systems, the porous bio-electrode proceeds to reduce oxygen
indirectly so that heterogeneous reaction and di�usion of the two dilute species O2

and H2O2 are involved [10]. The reaction rates depend on the operating potential
and can be very large for a low operating potential. The macroscopic equations
developed in [10] form the basis of a numerical tool for optimizing porous micro-
electrode thickness [11]. However, the authors considered only the low kinetic
number regime for the sake of simplicity. The high Damköhler regime remains
an open issue. Another �eld of application is agronomy with ion uptake (metals,
ligands, ligand-complexed metals) by roots. Homogeneous and heterogeneous re-
actions combined with the di�usion mechanism take place in the soil with very
variable orders of magnitude of the reaction rates [12]. There is a strong motiva-
tion to elucidate the upscaling procedure for di�usion-reaction problems especially
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in the case of large Damköhler number.
Battiato and Tartakovsky have applied the asymptotic expansion method in the
case of di�usion-advection coupled to a non linear chemical reaction for small values
of Damköhler number considering one species [13] and multi-species [14]. However,
the standard multiscale expansion fails to derive macroscopic mass conservation
equations in the case of a large Damköhler number. In a previous work [15],
we have examined theoretical models for the di�usion of two species coupled to
a heterogeneous reaction by the classical periodic homogenization procedure. It
has been emphasized that the homogenized models obtained for high Damköhler
number fail to predict the physics at short times when the chemical equilibrium is
not achieved.
For the more challenging case of predominating reaction, several attempts have
been made to derive macroscopic laws for one species. The �rst one goes back to
Shapiro and Brenner [16] using the method of moments. Mauri [17] has used the
periodic homogenization method to upscale the di�usion-convection problem cou-
pled with linear heterogeneous chemical reaction for di�erent orders of magnitude
of the Péclet and Damköhler numbers. The homogenized di�usion (or dispersion)
tensor is a�ected by the local chemical reaction rate for high values of the Damköh-
ler number. Its determination requires the resolution of a boundary value problem
coupled to an auxiliary eigenvalue problem. With the help of the volume averag-
ing approach, Valdés-Parada et al. [18, 19] have shown that the e�ective di�usion
tensor depends on the reaction rate for high Damköhler number. Multi-species
di�usion/heterogeneous reaction problem has also been studied by Qiu et al. [20]
using the same approach. E�ective di�usion and co-di�usion tensors depending
on the reaction rates are introduced and the authors highlight the in�uence of the
local variation of the reaction rate on the macroscopic response of the upscaled
model.
A general framework to study the di�usion-advection-reaction problem in the case
of large Damköhler number has been introduced by Allaire et al. [21, 22] combining
the asymptotic expansion method with spectral problems at the unit cell level. The
authors highlight the in�uence of the reaction on the di�usion-dispersion tensor.
Recently, this technique has been used by Bourbatache et al. [23] to upscale
a di�usion-reaction problem for a single species. Municchi and Icardi [24] have
solved the same problem including advection.
The novel method proposed in this paper to upscale a two species di�usion/reaction
problem makes use of a change of variable based on a spectral approach coupled
with a homogenization procedure. The concentrations are developed in series
in the basis of eigenfunctions associated with periodic spectral problems, thus
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forming a new microscopic problem to be homogenized. The proposed approach
leads to consistent homogenized models, even for large Damköhler number values.
These models are capable of capturing the physics at very short times, when the
characteristic time of reaction is much faster than the di�usion one.

2. Pore-scale model

2.1. Initial problem
Consider a porous medium occupying a macroscopic domain Ω∗ of characteristic
length L, composed of an immobile �uid phase Ω∗f and of a rigid solid phase Ω∗s;
the solid-�uid interface is denoted Γ∗fs. We consider a di�usion problem of two
species A and B in the �uid phase Ω∗f . At the solid/�uid interface Γ∗fs, a reversible
chemical reaction occurs as follows

A
k∗1


k∗2

B at Γ∗fs (1)

where k∗1 and k∗2 are the associated constant reaction rates. It should be noted
that the dimensional quantities are indexed by the superscript ∗.
Let c∗1 and c∗2 be the concentrations of A and B respectively. Assuming that
the transport is ruled by a Fickian process, the microscopic di�usion/reaction
equations at the pore-scale are written as

∂c∗1
∂t∗
−∇∗ · (D∗1∇∗c∗1) = 0 in Ω∗f

∂c∗2
∂t∗
−∇∗ · (D∗2∇∗c∗2) = 0 in Ω∗f

−D∗1∇∗c∗1 · nfs = k∗1c
∗
1 − k∗2c∗2 at Γ∗fs

−D∗2∇∗c∗2 · nfs = k∗2c
∗
2 − k∗1c∗1 at Γ∗fs

(2)

where D∗1 and D∗2 denote the di�usion coe�cients of A and B respectively, nfs the
normal unit vector at the solid/�uid interface pointing out of the �uid phase.
The microstructure of Ω∗ is assumed to be constituted of the repetition of a periodic
elementary cell Y ∗ of characteristic length l. The macroscopic and microscopic spa-
tial coordinates are noted x∗ = (x∗1, x

∗
2, x

∗
3) and y∗ = (y∗1, y

∗
2, y

∗
3) respectively.

The scale separation condition (l � L) allows introducing the small parameter
ε = l/L, the micro-scale l to the macro-scale L ratio.
The elementary cell of the porous medium Y ∗ = Y ∗f ∪ Y ∗s is composed of the
�uid phase Y ∗f and of the solid phase Y ∗s . The boundary of the �uid phase
∂Y ∗f = ∂Y ∗fs ∪ ∂Y ∗fe is constituted of the solid-�uid interface ∂Y ∗fs assumed to
be impermeable and of the external interface ∂Y ∗fe (�gure 1).
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Zoom of the
microstructure

Figure 1: Schematic representation of a porous medium with periodic microstructure. a) Macro-
scopic scale. b) Elementary reference cell.

2.2. Associated spectral problem

The initial microscopic model will be transformed into a new problem associated
with the following spectral problem de�ned in the periodic unit cell Y ∗

−∇∗ ·
(
D∗1∇∗ψ∗1,n

)
= λ∗nψ

∗
1,n in Y ∗f

−∇∗ ·
(
D∗2∇∗ψ∗2,n

)
= λ∗nψ

∗
2,n in Y ∗f

−D∗1∇∗ψ∗1,n · nfs = k∗1 ψ
∗
1,n − k∗2 ψ∗2,n at ∂Y ∗fs

−D∗2∇∗ψ∗2,n · nfs = k∗2 ψ
∗
2,n − k∗1 ψ∗1,n at ∂Y ∗fs

(3)

where ψ∗1,n(y∗) and ψ∗2,n(y∗) denote the Y -periodic eigenfunctions sharing the same
eigenvalues λ∗n, with n ∈ N.
Three important points must be emphasized. First, the eigenfunctions ψ∗1,n and
ψ∗2,n are de�ned to within a same multiplicative constant. Secondly, it should be
noted that λ∗0 = 0 is also an eigenvalue associated with the constant eigenfunctions
ψ∗1,0 and ψ

∗
2,0 satisfying the condition k∗1 ψ

∗
1,0 − k∗2 ψ∗2,0 = 0. Thirdly, the eigenfunc-

tions (ψ∗1,n, ψ
∗
2,n) for n ≥ 1 obey a compatibility equation. Integrating Eqs. (3a)

and (3b) over Y ∗f , using the divergence theorem yields〈
ψ∗1,n

〉f
+
〈
ψ∗1,n

〉f
= 0 for n ≥ 1 (4)

where the operator 〈.〉f denotes the intrinsic average in the �uid phase of the unit
cell de�ned in (20).
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The unknowns c∗i (i ∈ {1, 2}) are sought in a series development related to the
spectral problem as follows1

c∗i (t
∗,x∗,y∗) =

∞∑
n=0

ψ∗i,n(y∗) exp (−λ∗nt∗) v∗i,n(t∗,x∗,y∗) (5)

where v∗i,n are new variables depending also on time and position.
The decomposition (5) is based on the idea of a separation of variables in the
unit cell Y . This choice is justi�ed by the orthogonality condition (A.9) for the
eigenfunctions ψ∗i,n (see Appendix A and reference [25]). Generally, the function
v∗i,n should be constant in the unit cell, i.e. depending only on x∗. However,
the complex feature of local chemical non-equilibrium at short time requires that
v∗i,n should depend also on y∗ and t∗ in order to describe two separated time
scales: a short time related to the chemical reaction in the exponential term and
a macroscopic time corresponding to the transport problem. As shown later, at
the leading order O(ε0) corresponding to the macroscale, v∗i,n is only function of
x∗ and t∗ (Eq. (24)).
Inserting (5) into the initial problem (2) written on Y ∗f yields

∞∑
n=0

exp(−λ∗nt∗)
{
ψ∗i,n

(
∂v∗i,n
∂t∗
− λ∗n v∗i,n

)
−∇∗ ·

[
D∗i∇∗ (ψ∗i,nv∗i,n)] } = 0 in Y ∗f

−
∞∑
n=0

exp(−λ∗nt∗)D∗1∇∗(ψ∗1,nv
∗
1,n) · nfs

=
∞∑
n=0

exp(−λ∗nt∗)
(
k∗1ψ

∗
1,nv

∗
1,n − k∗2ψ∗2,nv∗2,n

)
at ∂Y ∗fs

−
∞∑
n=0

exp(−λ∗nt∗)D∗2∇∗(ψ∗2,nv
∗
2,n) · nfs

=
∞∑
n=0

exp(−λ∗nt∗)
(
k∗2ψ

∗
2,nv

∗
2,n − k∗1ψ∗1,nv∗1,n

)
at ∂Y ∗fs.

(6)

When the eigenvalues are well separated, the problem (6) can be solved separately

1A priori the unknowns c∗i depend on the macroscopic and microscopic space variables x∗ and
y∗ assumed to be independent.
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for each value of n, leading to the n-systems of equations for v∗i,n
ψ∗i,n

(
∂∗v∗i,n
∂t∗

− λnv∗i,n
)

= ∇∗ ·
[
D∗i∇∗ (ψ∗i,nv∗i,n)] in Y ∗f

−D∗1∇∗ (ψ∗1,nv∗1,n) · nfs = k∗1ψ
∗
1,nv

∗
1,n − k∗2ψ∗2,nv∗2,n at ∂Y ∗fs

−D2∇∗ (ψ∗2,nv∗2,n) · nfs = k∗2ψ
∗
2,nv

∗
2,n − k∗1ψ∗1,nv∗1,n at ∂Y ∗fs.

(7)

Multiplying (7a) by ψ∗i,n gives

ψ∗2i,n
∂v∗i,n
∂t∗
− λ∗nψ∗2i,n v∗i,n = ψ∗i,n∇∗ ·

[
D∗i∇∗ (ψ∗i,nv∗i,n)]

= ψ∗i,n∇∗ · (D∗iψ∗i,n∇∗v∗i,n +D∗i v∗i,n∇∗ψ∗i,n)
= ψ∗2i,n ∇∗ · (D∗i∇∗vi,n) + 2D∗iψ∗i,n∇∗ψ∗i,n ·∇∗v∗i,n
+ ψ∗i,nv

∗
i,n∇∗ · (D∗i∇∗ψ∗i,n)

= ∇∗ · (D∗iψ∗2i,n∇∗vi,n) + ψ∗i,nv
∗
i,n∇∗ · (D∗i∇∗ψ∗i,n).

(8)

Using spectral problem (3a) and (3b), the last terms of the left and right hand
sides of (8) cancel out. It yields

ψ∗2i,n
∂v∗i,n
∂t∗

= ∇∗ · (D∗1ψ∗2i,n∇∗v∗i,n). (9)

On the other hand, multiplying the interface condition (7b) by ψ∗1,n and using the
boundary condition (3c), yields

k∗1ψ
∗2
1,nv

∗
1,n − k∗2ψ∗1,nψ∗2,nv∗2,n = −nfs · D∗1ψ∗1,n∇∗(ψ∗1,nv

∗
1,n)

= −nfs · (D∗1ψ∗21,n∇∗v∗1,n + D∗1ψ∗1,nv∗1,n∇∗ψ∗1,n)

= −nfs · (D∗1ψ∗21,n∇∗v∗1,n) + ψ∗1,nv
∗
1,n(k∗1ψ

∗
1,n − k∗2ψ∗2,n). (10)

We �nally obtain the interface condition for v∗1,n

−D∗1ψ∗21,n∇∗v∗1,n · nfs = k∗2ψ
∗
1,nψ

∗
2,n(v∗1,n − v∗2,n) at ∂Y ∗fs. (11)

A similar development can be performed to obtain the interface condition for v∗2,n.

Let de�ne D̃∗1,n = D∗1ψ∗21,n and D̃∗2,n = D∗2ψ∗22,n. The microscopic problem of v∗1,n and
v∗2,n to be homogenized is now written as

ψ∗21,n

∂v∗1,n
∂t∗

= ∇∗ ·
(
D̃∗1,n∇∗v∗1,n

)
in Y ∗f

ψ∗22,n

∂v∗2,n
∂t∗

= ∇∗ ·
(
D̃∗2,n∇∗v∗2,n

)
−D̃∗1,n∇∗v∗1,n · nfs = k∗2 ψ

∗
1,n ψ

∗
2,n(v∗1,n − v∗2,n) at ∂Y ∗fs

−D̃∗2,n∇∗v∗2,n · nfs = k∗1 ψ
∗
1,n ψ

∗
2,n(v∗2,n − v∗1,n).

(12)
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The initial problem (2) has been transformed into n di�usion problems in the
unit cell with a spatially periodic di�usion coe�cient. The main di�erence is in
the form of the boundary condition at the interface ∂Y ∗fs, which will allow the
homogenization of the problem.

3. Periodic homogenization procedure

Our aim now is to upscale the microscopic model (12) for v∗i,n in order to con-
struct the average mass conservation equations at the macroscale. This task is
accomplished through the formal homogenization procedure.

3.1. Dimensional analysis

A dimensional analysis of the equations is �rst performed. Let cr, Dr, kr, ψr, vr
be the reference quantities of concentrations, di�usion coe�cients, reaction rates,
eigenfunctions ψ∗i,n and unknown functions v∗i,n.
De�ning the dimensionless quantity as f = f ∗/fr, where fr is the reference quantity
of the variable f ∗, we have

x =
x∗

L
, y =

y∗

l
, ci,n =

c∗i,n
cr
, Di =

D∗i
Dr

, ki =
k∗i
kr
, ψi,n =

ψ∗i,n
ψr

, vi,n =
v∗i,n
vr
. (13)

It must be quoted that ψ∗i,n are dimensionless variables so that ψr = 1 and v∗i,n has
the dimension of concentration (noting that v∗i,n is solution of a di�usion equation
(12)).

The reference length scale is chosen as the macroscopic length L so that we have:

∇∗ =
∇
L
, ∇∗· = ∇·

L
(14)

Finally, the reference time is chosen as the macroscopic di�usive time

tr =
L2

Dr

(15)

Using (13), (14) and (15), from (12) the dimensionless microscopic problem for
v1,n and v2,n can be written as

ψ2
1,n

∂v1,n

∂t
= ∇ ·

(
D̃1,n∇v1,n

)
in Yf

ψ2
2,n

∂v2,n

∂t
= ∇ ·

(
D̃2,n∇v2,n

)
−D̃1,n∇v1,n · nfs = DaL k2 ψ1,n ψ2,n(v1,n − v2,n) at ∂Yfs
−D̃2,n∇v2,n · nfs = DaL k1 ψ1,n ψ2,n(v2,n − v1,n)

(16)
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where DaL represents the macroscopic Damköhler number de�ned as the ratio of
the macroscopic di�usion time to the reaction one

DaL =
krL

Dr

(17)

3.2. Reduction to a one-scale problem

To proceed within the periodic homogenization framework, the above problem
needs to be reduced to a one-scale problem in considering three di�erent scenarios
related to the order of magnitude of the Damköhler number:

• Case 1: predominating reaction rates when DaL = O(ε−1)

• Case 2: di�usion and reaction of the same order when DaL = O(ε0)

• Case 3: dominant di�usion when DaL = O(ε)

where ε = l/L denotes the scale ratio and εp, p ∈ Z the reference scale of compar-
ison to reduce the problem to a one-scale problem.
The results of the upscaling procedures for the three di�erent orders of magnitude
of the Damköhler number are summarized in Result 1, Result 2 and Result 3 at
the end of each section.

3.3. Asymptotic expansion

To perform the asymptotic expansion, the perturbation parameter ε = l/L is
assumed to be small. Thus, we postulate the ansatz

f (ε)(x,y, t) =
∞∑
k=0

εkf (k)(x,y, t) (18)

where the functions f (k) = f (k)(x,y, t) (k = 0, 1, 2...) are y-periodic. The di�eren-
tial operators are given by

∇f (ε)(x,y, t) = ∇xf
(ε)(x,y, t) + ε−1∇yf

(ε)(x,y, t)
∇ · f (ε)(x,y, t) = ∇x · f (ε)(x,y, t) + ε−1∇y · f (ε)(x,y, t).

(19)

Finally, the average, intrinsic average and area average operators in the unit cell
are de�ned as

〈f〉 =
1

| Y |

∫
Y

fdV ; 〈f〉f =
1

| Yf |

∫
Yf

fdV ; 〈f〉fs =
1

| ∂Yfs |

∫
∂Yfs

fdS.(20)

9
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4. Case 1: homogenized model for predominant reaction

The predominant reaction with DaL = O(ε−1) is the most interesting case in which
the classical homogenization procedure fails to predict the macroscopic conserva-
tion laws for short time as discussed in [15] and in section 4.3.

4.1. Asymptotic expansion

Considering DaL = O(ε−1), the ε-microscopic model of Eqs. (16) is written as

ψ2
1,n

∂v
(ε)
1,n

∂t
= ∇ ·

(
D̃1,n∇v

(ε)
1,n

)
in Yf

ψ2
2,n

∂v
(ε)
2,n

∂t
= ∇ ·

(
D̃2,n∇v

(ε)
2,n

)
−D̃1,n∇v

(ε)
1,n · nfs = ε−1k2 ψ1,n ψ2,n(v

(ε)
1,n − v

(ε)
2,n) at ∂Yfs

−D̃2,n∇v
(ε)
2,n · nfs = ε−1k1 ψ1,n ψ2,n(v

(ε)
2,n − v

(ε)
1,n).

(21)

In particular, for n = 0 corresponding to the eigenvalue λ0 = 0, the eigenfunctions
de�ned to within one multiplicative constant are given by:

ψ1,0 =

√
k2

k1

and ψ2,0 =

√
k1

k2

. (22)

This expression satis�es the normalization condition (31) that will be imposed
later.

Using the asymptotic expansion (18) for the unknowns v
(ε)
1,n and v

(ε)
2,n and the ex-

pression (19) for the di�erential operators, the successive powers of ε in Eqs. (21)
are now collected.

• Order O(ε−2)
At order O(ε−2) in the volume and O(ε−1) at the interface, Eqs. (21) become

∇y ·
(
D̃1,n∇yv

(0)
1,n

)
= 0 in Yf

∇y ·
(
D̃2,n∇yv

(0)
2,n

)
= 0

−D̃1,n∇yv
(0)
1,n · nfs = k2ψ1,nψ2,n(v

(0)
1,n − v

(0)
2,n) at ∂Yfs

−D̃2,n∇yv
(0)
2,n · nfs = k1ψ1,nψ2,n(v

(0)
2,n − v

(0)
1,n).

(23)

It is obvious that

v
(0)
1,n(t,x,y) = v

(0)
2,n(t,x,y) = v(0)

n (t,x) (24)
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is solution of the problem (23). The uniqueness of the solution can easily be
proved for n = 0 when the eigenfunctions ψ1,0 and ψ2,0 are constant and positive2.
However, for n > 0 it is not straightforward and will not be proved in this work.
Henceforth, we consider (24) as the solution of (23).

• Order O(ε−1)

At order O(ε−1) in the volume and O(ε0) at the interface, we have

∇y ·
[
D̃1,n

(
∇xv

(0)
n + ∇yv

(1)
1,n

)]
= 0 in Yf

∇y ·
[
D̃2,n

(
∇xv

(0)
n + ∇yv

(1)
2,n

)]
= 0

−D̃1,n

(
∇xv

(0)
n + ∇yv

(1)
1,n

)
· nfs = k2ψ1,nψ2,n(v

(1)
1,n − v

(1)
2,n) at ∂Yfs

−D̃2,n

(
∇xv

(0)
n + ∇yv

(1)
2,n

)
· nfs = k1ψ1,nψ2,n(v

(1)
2,n − v

(1)
1,n).

(25)

By linearity, the solution for v
(1)
1,n and v

(1)
2,n in y is sought in the following form with

a same additive constant v̂
(1)
n depending on t and x

v
(1)
1,n = χ1,n ·∇xv

(0)
n + v̂

(1)
n (t,x)

v
(1)
2,n = χ2,n ·∇xv

(0)
n + v̂

(1)
n (t,x)

(26)

where the vectors χ1,n and χ2,n satisfy the following coupled problem
0 = ∇y ·

[
D̃1,n

(
I +

(
∇yχ1,n

)T)]
in Yf

0 = ∇y ·
[
D̃2,n

(
I +

(
∇yχ2,n

)T)]
−D̃1,n

(
I + ∇yχ1,n

)
· nfs = k2ψ1,nψ2,n

(
χ1,n − χ2,n

)
at ∂Yfs

−D̃2,n

(
I + ∇yχ2,n

)
· nfs = k1ψ1,nψ2,n

(
χ2,n − χ1,n

)
.

(27)

where the superscript T denotes a matrix transpose.

• Order O(ε0)

2Indeed, setting U = v
(0)
2,0−v

(0)
1,0, using (22), Eqs. (23) can be transformed to a Laplace equation

for U with homogeneous Robin-Fourier boundary conditions similar to (35) that admits a unique

solution U = 0 and therefore v
(0)
2,0 = v

(0)
1,0.
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At the leading order O(1) in the volume and O(ε−1) at the interface, the time-

dependent problem for v
(0)
n is written as

ψ2
1,n

∂v
(0)
n

∂t
= ∇y ·

[
D̃1,n

(
∇yv

(2)
1,n + ∇xv

(1)
1,n

)]
+ ∇x ·

[
D̃1,n

(
∇yv

(1)
1,n + ∇xv

(0)
n

)]
in Yf

ψ2
2,n

∂v
(0)
n

∂t
= ∇y ·

[
D̃2,n

(
∇yv

(2)
2,n + ∇xv

(1)
2,n

)]
+ ∇x ·

[
D̃2,n

(
∇yv

(1)
2,n + ∇xv

(0)
n

)]
−D̃1,n

(
∇yv

(2)
1,n + ∇xv

(1)
1,n

)
· nfs = k2ψ1,nψ2,n

(
v

(2)
1,n − v

(2)
2,n

)
at ∂Yfs

−D̃2,n

(
∇yv

(2)
2,n + ∇xv

(1)
2,n

)
· nfs = k1ψ1,nψ2,n

(
v

(2)
2,n − v

(2)
1,n

)
.

(28)

Averaging Eqs. (28a) and (28b) over the �uid phase of the unit cell, taking into
account the interface conditions (28c) and (28d) and considering the solution (26)

for v
(1)
i,n , we get

〈ψ2
1,n〉f

∂v
(0)
n

∂t
= ∇x ·

[〈
D̃1,n

(
I +

(
∇yχ1,n

)T)〉f ∇xv
(0)
n

]
− |∂Yfs|

|Yf |

〈
k2ψ1,nψ2,n

(
v

(2)
1,n − v

(2)
2,n

)〉fs
〈ψ2

2,n〉f
∂v

(0)
n

∂t
= ∇x ·

[〈
D̃2,n

(
I +

(
∇yχ2,n

)T)〉f ∇xv
(0)
n

]
+
|∂Yfs|
|Yf |

〈
k1ψ1,nψ2,n

(
v

(2)
1,n − v

(2)
2,n

)〉fs
.

(29)

By adding these two above averaged equations previously multiplied by k1 and k2

respectively, we obtain(
k1

〈
ψ2

1,n

〉f
+ k2

〈
ψ2

2,n

〉f) ∂v(0)
n

∂t
=

∇x·
{[

k1

〈
D̃1,n

(
I +

(
∇yχ1,n

)T)〉f
+ k2

〈
D̃2,n

(
I +

(
∇yχ2,n

)T)〉f] ·∇xv
(0)
n

}
.

(30)

To ensure uniqueness of the spectral problem, the eigenfunctions are normalized
by imposing

k1

〈
ψ2

1,n

〉f
+ k2

〈
ψ2

2,n

〉f
= k1 + k2 (31)
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which leads to the macroscopic equation for v
(0)
n

∂v
(0)
n

∂t
= ∇x ·

(
Dv,n ·∇xv

(0)
n

)
. (32)

The e�ective di�usion tensor Dv,n is de�ned by

Dv,n =
k1

k1 + k2

〈
D̃1,n

(
I +

(
∇yχ1,n

)T)〉f
+

k2

k1 + k2

〈
D̃2,n

(
I +

(
∇yχ2,n

)T)〉f
.(33)

In particular for n = 0, the local problem (27) reduces to
∇y ·

[
D1

(
I +

(
∇yχ1,0

)T)]
= 0 in Yf

∇y ·
[
D2

(
I +

(
∇yχ2,0

)T)]
= 0

−D1

(
I + ∇yχ1,0

)
· nfs = k1

(
χ1,0 − χ2,0

)
at ∂Yfs

−D2

(
I + ∇yχ2,0

)
· nfs = k2

(
χ2,0 − χ1,0

) (34)

where the expression (22) is used for ψ1,0 and ψ2,0. Setting Θ = χ1,0 − χ2,0, it
can be easily proven that Θ is solution of a Laplace equation with homogeneous
Robin-Fourier boundary conditions{

∆yΘ = 0 in Yf
∇yΘ · nfs + βΘ = 0 at ∂Yfs

(35)

with β =
k1

D1

+
k2

D2

> 0, leading to Θ = 0 and therefore to χ1,0 = χ2,0 ≡ χ.
In this case, the expression Dv,0 reduces to the simple expression

Dv,0 =
k1D

eff
2 + k2D

eff
1

k1 + k2

(36)

where the e�ective coe�cients are de�ned as

Deff
1 =

〈
D1

(
I + (∇yχ)T

)〉f
Deff

2 =
〈
D2

(
I + (∇yχ)T

)〉f (37)

and χ is solution of the classical tortuosity problem
∆yχ = 0 in Yf

(I + ∇yχ) · nfs = 0 at ∂Yfs
〈χ〉f = 0 .

(38)
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4.2. Back to concentrations

In the development (5) of the concentrations c∗i , when the eigenvalues are well
separated, it is legitimate to consider only the two �rst eigenvalues λ∗0 = 0 and λ∗1
with their corresponding eigenfunctions. At the leading order, we have3

c
∗(0)
1 = ψ∗1,0v

∗(0)
0 + ψ∗1,1 exp(−λ∗1t∗)v

∗(0)
1

c
∗(0)
2 = ψ∗2,0v

∗(0)
0 + ψ∗2,1 exp(−λ∗1t∗)v

∗(0)
1 .

(39)

In the sequel, to simplify the notations, the superscript (0) is henceforth omitted.
It should be noted that the concentrations c∗1 and c∗2 at the order O(ε0) are y∗-
dependent variables since ψ∗1,1 and ψ∗2,1 depend on y∗.
Averaging (39) over the �uid phase of the unit cell gives

〈c∗1〉f = ψ∗1,0v0
∗ + 〈ψ∗1,1〉f exp(−λ∗1t∗)v∗1

〈c∗2〉f = ψ∗2,0v0
∗ + 〈ψ∗2,1〉f exp(−λ∗1t∗)v∗1.

(40)

On the other hand, going back to dimensional variables from (32), we easily get

∂v∗n
∂t∗

= ∇∗x∗ ·
(
D∗v,n ·∇∗x∗v∗n

)
(41)

where from (33) and (36) the dimensional e�ective coe�cients D∗v,0 and D∗v,1 are
given by

D∗v,0 =
k∗1D∗2 + k∗2D∗1
k∗1 + k∗2

〈I +
(
∇∗y∗χ∗

)T〉f (42)

D∗v,1 =
k∗1

k∗1 + k∗2

〈
D̃∗1,1

[
I+
(
∇∗y∗χ∗1,1

)T]〉f
+

k∗2
k∗1 + k∗2

〈
D̃∗2,1

[
I+
(
∇∗y∗χ∗2,1

)T]〉f
(43)

The vectors χ∗1,1 and χ∗2,1 are solutions of the local problem
∇∗y∗ ·

[
D̃∗1,1

(
I +

(
∇∗y∗χ∗1,1

)T)]
= 0 in Y ∗f

∇∗y∗ ·
[
D̃∗2,1

(
I +

(
∇∗y∗χ∗2,1

)T)]
= 0

−D̃∗1,1
(
I + ∇∗y∗χ∗1,1

)
· nfs = k∗2ψ

∗
1,1ψ

∗
2,1

(
χ∗1,1 − χ∗2,1

)
at ∂Y ∗fs

−D̃∗2,1
(
I + ∇∗y∗χ∗2,1

)
· nfs = k∗1ψ

∗
1,1ψ

∗
2,1

(
χ∗2,1 − χ∗1,1

)
.

(44)

3This choice discussed later is also explained by Eqs. (B.7) and (B.8) of Appendix B.
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For n = 0, χ∗ = χ∗1,0 = χ∗2,0 is solution of the problem (38) in dimensional form

with constant eigenfunctions corresponding to the eigenvalue λ∗0 = 0 given by

ψ∗1,0 =

√
k∗2
k∗1
, ψ∗2,0 =

√
k∗1
k∗2
. (45)

Using (41) for n = 0 and n = 1, the time derivative of Eq. (40a) yields

∂〈c∗1〉f

∂t∗
−∇∗x∗ ·

(
D∗v,1 ·∇∗x∗〈c∗1〉f

)
+ λ∗1〈c∗1〉f =

ψ∗1,0∇∗x∗ ·
[(

D∗v,0 −D∗v,1
)
·∇∗x∗v∗0

]
+ λ∗1ψ

∗
1,0v0

∗. (46)

A similar development for c∗2 gives

∂〈c∗2〉f

∂t∗
−∇∗x∗ ·

(
D∗v,1 ·∇∗x∗〈c∗2〉f

)
+ λ∗1〈c∗2〉f =

ψ∗2,0∇∗x∗ ·
[(

D∗v,0 −D∗v,1
)
·∇∗x∗v∗0

]
+ λ∗1ψ

∗
2,0v0

∗. (47)

Using the compatibility condition 〈ψ∗1,1〉f + 〈ψ∗2,1〉f = 0 of the spectral problem (3),
we obtain from (40)

v∗0 =
〈c∗1〉f + 〈c∗2〉f

ψ∗1,0 + ψ∗2,0
. (48)

To �nish, inserting (48) into (46) and (47) leads to the following result of the
average mass conservation equations.

Result 1. For a predominant reaction corresponding to DaL = O(ε−1), the con-
centrations at the leading order are solutions of the homogenized coupled di�usion-
reaction problem

∂〈c∗1〉f

∂t∗
−∇∗x∗ ·

(
k∗1D

∗
v,1 + k∗2D

∗
v,0

k∗1 + k∗2
·∇∗x∗〈c∗1〉f

)
−∇∗x∗ ·

(
k∗2(D∗v,0 −D∗v,1)

k∗1 + k∗2
·∇∗x∗〈c∗2〉f

)
+ λ∗1

k∗1〈c∗1〉f − k∗2〈c∗2〉f

k∗1 + k∗2
= 0

∂〈c∗2〉f

∂t∗
−∇∗x∗ ·

(
k∗1(D∗v,0 −D∗v,1)

k∗1 + k∗2
·∇∗x∗〈c∗1〉f

)
−∇∗x∗ ·

(
k∗2D

∗
v,1 + k∗1D

∗
v,0

k∗1 + k∗2
·∇∗x∗〈c∗2〉f

)
− λ∗1

k∗1〈c∗1〉f − k∗2〈c∗2〉f

k∗1 + k∗2
= 0

(49)
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where the homogenized di�usion tensors D∗v,0 and D∗v,1 are de�ned by (42) and
(43).

The above equations represent the macroscopic mass conservation law for the
averaged concentrations with coupled di�usion terms and with an exchange term
due to reaction depending on the �rst non-zero eigenvalue λ∗1 of the associated
spectral problem.

4.3. Comparison with the classical periodic homogenization

The objective of this subsection is to compare the result obtained by the current
approach with that reported in [15] using a classical homogenization procedure.
Let consider only the �rst eigenvalue value λ∗0 = 0. Going back to dimensional
concentrations and omitting the superscript (0), we have from (39)

c∗1 = ψ∗1,0v
∗
0

c∗2 = ψ∗2,0v
∗
0.

(50)

Therefore, the homogenization problem (32) for n = 0 leads obviously to

∂c∗i
∂t

= ∇∗x∗ ·
(
D∗v,0 ·∇∗x∗c∗i

)
(51)

for i = 1, 2, where the homogenized di�usion tensor D∗v,0 is given by (42).
The concentrations are related by the constraint

k∗1c
∗
1 − k∗2c∗2 = 0 (52)

according to (50) and the expressions (45) of ψ∗1,0 and ψ∗2,0.
This result is also obtained by the classical homogenization approach as reported in
[15]. It is important to notice that considering solely the �rst eigenvalue λ∗0 is only
valid for long di�usion times and cannot handle boundary and initial conditions
that does not verify the equilibrium condition4 (52). This point has been analyzed
in [15]. The correction with the �rst non-zero eigenvalue λ∗1 enables to overcome
this di�culty, which is the main interest of the approach proposed in this work
leading to Result 1. According to expression (B.8) of Appendix B, it is clear that
the gap with the equilibrium condition is described by the non-zero eigenvalues.
Moreover, as the eigenvalues increase with n, the main information is contained in
the �rst non-zero eigenvalue λ∗1. Due to the exponential decay, the contribution of
the other eigenvalues becomes rapidly negligible with time.

4In that case, we have a boundary layer problem that will be studied in a further work.
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5. Homogenized model for di�usion-reaction of the same order

The intermediate case corresponds to di�usion and reaction characteristic times
of the same order at the macroscale, i.e satisfying DaL = O(ε0).

5.1. Asymptotic expansion

Considering DaL = O(ε0), Eqs.(16) reduce to

ψ2
1,n

∂v
(ε)
1,n

∂t
= ∇ ·

(
D̃1,n∇v

(ε)
1,n

)
in Yf

ψ2
2,n

∂v
(ε)
2,n

∂t
= ∇ ·

(
D̃2,n∇v

(ε)
2,n

)
−D̃1,n∇v

(ε)
1,n · nfs = k2 ψ1,n ψ2,n(v

(ε)
1,n − v

(ε)
2,n) at ∂Yfs

−D̃2,n∇v
(ε)
2,n · nfs = k1 ψ1,n ψ2,n(v

(ε)
2,n − v

(ε)
1,n).

(53)

In a similar fashion with the �rst case, the successive powers of ε are collected.

• Order O(ε−2)

At order O(ε−2) in the volume and O(ε−1) on the interface ∂Yfs, we get
∇y ·

(
D̃1,n∇yv

(0)
1,n

)
= 0 in Yf

∇y ·
(
D̃2,n∇yv

(0)
2,n

)
= 0

−D̃1,n∇yv
(0)
1,n · nfs = 0 at ∂Yfs

−D̃2,n∇yv
(0)
2,n · nfs = 0

(54)

leading straightforwardly to v
(0)
1,n(t,x,y) = v

(0)
1,n(t,x) and v

(0)
2,n(t,x,y) = v

(0)
2,n(t,x).

• Order O(ε−1)

At order O(ε−1) in the volume and O(ε0) on the interface, it yields

∇y ·
[
D̃1,n

(
∇xv

(0)
1,n + ∇yv

(1)
1,n

)]
= 0 in Yf

∇y ·
[
D̃2,n

(
∇xv

(0)
2,n + ∇yv

(1)
2,n

)]
= 0

−D̃1,n

(
∇xv

(0)
1,n + ∇yv

(1)
1,n

)
· nfs = k2ψ1,nψ2,n(v

(0)
1,n − v

(0)
2,n) at ∂Yfs

−D̃2,n

(
∇xv

(0)
2,n + ∇yv

(1)
2,n

)
· nfs = k1ψ1,nψ2,n(v

(0)
2,n − v

(0)
1,n).

(55)

Averaging Eq. (55a) over the unit cell and using the divergence theorem together

with the interface condition Eq. (55c), result in
(
v

(0)
1,n − v

(0)
2,n

)
〈ψ1,nψ2,n〉fs = 0 as

17

Accepted Manuscript / Final version



v
(0)
1,n and v

(0)
2,n are y-independent variables. The solution is v

(0)
1,n(t,x) = v

(0)
2,n(t,x) ≡

v
(0)
n (t,x).

Coming back to problem (55), by linearity the solution for v
(1)
i,n is sought in the

form

v
(1)
1,n = χ1,n ·∇xv

(0)
n + v̂

(1)
1,n(t,x) (56)

v
(1)
2,n = χ2,n ·∇xv

(0)
n + v̂

(1)
2,n(t,x) (57)

where v̂
(1)
1,n and v̂

(1)
2,n are two additive constants depending on t and x for the unit

cell problem. χ1,n and χ2,n are solutions of the following cell problems
∇y ·

[
D̃1,n

(
I +

(
∇yχ1,n

)T)]
= 0 in Yf

∇y ·
[
D̃2,n

(
I +

(
∇yχ2,n

)T)]
= 0

−D̃1,n

(
I + ∇yχ1,n

)
· nfs = 0 at ∂Yfs

−D̃2,n

(
I + ∇yχ2,n

)
· nfs = 0.

(58)

It can be noticed that unlike case 1, the problems of χ1,n and χ2,n are independent
and decoupled here. To ensure the uniqueness of the solution of χ1,n and χ2,n,
the supplementary condition of zero average in Yf is added. This condition has
no in�uence on the homogenized di�usion tensor, as only the gradient of χ1,n and
χ2,n is involved.
For n = 0, the problem (58) reduces to the classical tortuosity problem (38).

• Order O(ε0)

Finally, at order O(ε0) in the volume and O(ε−1) on the interface, we obtain

ψ2
1,n

∂v
(0)
n

∂t
= ∇y ·

[
D̃1,n

(
∇yv

(2)
1,n + ∇xv

(1)
1,n

)]
+ ∇x ·

[
D̃1,n

(
∇yv

(1)
1,n + ∇xv

(0)
n

)]
in Yf

ψ2
2,n

∂v
(0)
n

∂t
= ∇y ·

[
D̃2,n

(
∇yv

(2)
2,n + ∇xv

(1)
2,n

)]
+ ∇x ·

[
D̃2,n

(
∇yv

(1)
2,n + ∇xv

(0)
n

)]
−D̃1,n

(
∇yv

(2)
1,n + ∇xv

(1)
1,n

)
· nfs = k2ψ1,nψ2,n

(
v

(1)
1,n − v

(1)
2,n

)
at ∂Yfs

−D̃2,n

(
∇yv

(2)
2,n + ∇xv

(1)
2,n

)
· nfs = k1ψ1,nψ2,n

(
v

(1)
2,n − v

(1)
1,n

)
.

(59)
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A development similar to case 1 can be carried out to obtain the same macroscopic

equation for v
(0)
n

(
k1

〈
ψ2

1,n

〉f
+ k2

〈
ψ2

2,n

〉f) ∂v(0)
n

∂t
=

∇x ·
{[
k1

〈
D̃1,n

(
I +

(
∇yχ1,n

)T)〉f
+ k2

〈
D̃2,n

(
I +

(
∇yχ2,n

)T)〉f] ·∇xv
(0)
n

}
. (60)

Considering the normalization condition (31), we obtain Eq. (32).
The di�erence between these two cases only comes from the closure problem for
χ1,n and χ2,n as discussed previously, except for n = 0 where both cases share the
same local problem for χ.

5.2. Back to concentrations

Going back to dimensional variables in order to obtain the macroscopic di�usion
equations at the leading order for the concentrations 〈c∗1〉f and 〈c∗2〉f and proceeding
in the same manner as in �4.2, the following result is obtained.

Result 2. For a di�usion and reaction of the same order corresponding to DaL =
O(ε0), the concentrations at the leading order are solutions of the homogenized
coupled di�usion-reaction problem (49) similar to case 1. The only di�erence stems
from the decoupled closure problem (58).

5.3. Comparison with the classical periodic homogenization

As for case 1, considering only the �rst eigenvalue value λ∗0 = 0 and omitting the
superscript (0) lead to

c∗1 = ψ∗1,0v
∗
0

c∗2 = ψ∗2,0v
∗
0.

(61)

Therefore, the homogenized problem (32) for v∗n is written as

∂c∗i
∂t
−∇∗x∗ ·

[(
k∗1D

∗eff
2 + k∗2D

∗eff
1

k∗1 + k∗2

)
·∇∗x∗c∗i

]
= 0 (62)

for i = 1, 2 with the constraint:

k∗1c
∗
1 − k∗2c∗2 = 0. (63)
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The homogenized tensors D∗eff
1 and D∗eff

2 are given by:

D∗eff
1 =

〈
D∗1
(
I +

(
∇∗y∗χ∗

)T)〉f
D∗eff

2 =
〈
D∗2
(
I +

(
∇∗y∗χ∗

)T)〉f (64)

where χ∗ is solution of the local problem (38).
Considering only the �rst eigenvalue λ∗0 = 0 in expression (5), the result of case 1
with predominant reaction is recovered. In addition, these homogenized equations
can be obtained by a classical homogenization procedure (see [15]). Again, such
a homogenized result is only valid for long di�usion times and must be corrected
by an additional term corresponding to the �rst non-zero eigenvalue λ∗1 leading
to Result 2 in order to capture the complex behavior of the di�usion/reaction
processes at short times.

6. Dominant di�usion

The last case corresponds to a predominant di�usion for which DaL = O(ε).

6.1. Asymptotic expansion of equations

For DaL = O(ε), the ε-model reads as

ψ2
1,n

∂v
(ε)
1,n

∂t
= ∇ ·

(
D̃1,n∇v

(ε)
1,n

)
in Yf

ψ2
2,n

∂v
(ε)
2,n

∂t
= ∇ ·

(
D̃2,n∇v

(ε)
2,n

)
−D̃1,n∇v

(ε)
1,n · nfs = εk2 ψ1,n ψ2,n(v

(ε)
1,n − v

(ε)
2,n) at ∂Yfs

−D̃2,n∇v
(ε)
2,n · nfs = εk1 ψ1,n ψ2,n(v

(ε)
2,n − v

(ε)
1,n).

(65)

• Order O(ε−2)

At order O(ε−2) in the volume and O(ε−1) on the interface, the problem reads as
0 = ∇y ·

(
D̃1,n∇yv

(0)
1,n

)
in Yf

0 = ∇y ·
(
D̃2,n∇yv

(0)
2,n

)
0 = −D̃1,n∇yv

(0)
1,n · nfs at ∂Yfs

0 = −D̃2,n∇yv
(0)
2,n · nfs

(66)
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whose solutions are v
(0)
1,n(t,x,y) = v

(0)
1,n(t,x) and v

(0)
2,n(t,x,y) = v

(0)
2,n(t,x).

• Order O(ε−1)

At order O(ε−1) in the volume and O(ε0) on the interface, it yields

0 = ∇y ·
[
D̃1,n

(
∇xv

(0)
1,n + ∇yv

(1)
1,n

)]
in Yf

0 = ∇y ·
[
D̃2,n

(
∇xv

(0)
2,n + ∇yv

(1)
2,n

)]
0 = −D̃1,n

(
∇xv

(0)
1,n + ∇yv

(1)
1,n

)
· nfs at ∂Yfs

0 = −D̃2,n

(
∇xv

(0)
2,n + ∇yv

(1)
2,n

)
· nfs

(67)

where the problems for v
(1)
1,n and v

(1)
2,n are decoupled. The solution is sought in the

form
v

(1)
1,n = χ1,n ·∇xv

(0)
1,n + v̂

(1)
1,n(t,x)

v
(1)
2,n = χ2,n ·∇xv

(0)
2,n + v̂

(1)
2,n(t,x)

where χ1,n and χ2,n satisfy the local problems
0 = ∇y ·

[
D̃1,n

(
I +

(
∇yχ1,n

)T)]
in Yf

0 = ∇y ·
[
D̃2,n

(
I +

(
∇yχ2,n

)T)]
0 = −D̃1,n

(
I + ∇yχ1,n

)
· nfs at ∂Yfs

0 = −D̃2,n

(
I + ∇yχ2,n

)
· nfs.

(68)

• Order O(ε0)

At the leading order, the problem is written as

ψ2
1,n

∂v
(0)
1,n

∂t
= ∇y ·

[
D̃1,n

(
∇yv

(2)
1,n + ∇xv

(1)
1,n

)]
+ ∇x ·

[
D̃1,n

(
∇yv

(1)
1,n + ∇xv

(0)
1,n

)]
in Yf

ψ2
2,n

∂v
(0)
2,n

∂t
= ∇y ·

[
D̃2,n

(
∇yv

(2)
2,n + ∇xv

(1)
2,n

)]
+ ∇x ·

[
D̃2,n

(
∇yv

(1)
2,n + ∇xv

(0)
2,n

)]
−D̃1,n

(
∇yv

(2)
1,n + ∇xv

(1)
1,n

)
· nfs = k2ψ1,nψ2,n

(
v

(0)
1,n − v

(0)
2,n

)
at ∂Yfs

−D̃2,n

(
∇yv

(2)
2,n + ∇xv

(1)
2,n

)
· nfs = k1ψ1,nψ2,n

(
v

(0)
2,n − v

(0)
1,n

)
.

(69)
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Averaging Eqs. (69a-b) over the �uid phase of the unit cell and taking into account
the interface conditions (69c-d) lead to

〈
ψ2

1,n

〉f ∂v(0)
1,n

∂t
= ∇x ·

(〈
D̃1,n

(
I +

(
∇yχ1,n

)T)〉f ·∇xv
(0)
1,n

)
−

k2

(
v

(0)
1,n − v

(0)
2,n

)
|Yf |

∫
∂Yfs

ψ1,nψ2,ndA

〈
ψ2

2,n

〉f ∂v(0)
2,n

∂t
= ∇x ·

(〈
D̃2,n

(
I +

(
∇yχ2,n

)T)〉f ·∇xv
(0)
2,n

)
−

k1

(
v

(0)
2,n − v

(0)
1,n

)
|Yf |

∫
∂Yfs

ψ1,nψ2,ndA.

(70)

6.2. Back to concentrations

When the chemical reaction is slow, the series development (5) can be limited to
the �rst term corresponding to n = 0 and λ∗0 = 0, ψ∗1,0 and ψ∗2,0 being de�ned in
(45). Since v1,0 and v2,0 are independent variables, it is legitimate to impose the
initial conditions for the concentrations by using the initial conditions of v1,0 and
v2,0. As a consequence, for n ≥ 1 the initial conditions for v1,n and v2,n are null
and the functions vanish.
The macroscopic mass conservation laws in dimensional space for the concentra-
tions c∗1 and c∗2 at the leading order are obtained as follows

Result 3. For dominant di�usion corresponding to DaL = O(ε), the concen-
trations at the leading order are solutions of the homogenized coupled di�usion-
reaction problem

∂c∗1
∂t∗

= ∇∗x∗ ·
(〈
D∗1
(
I + ∇∗y∗χ∗

)〉f ·∇∗x∗c∗1

)
−
|∂Y ∗fs|
|Y ∗f |

(k∗1c
∗
1 − k∗2c∗2)

∂c∗2
∂t∗

= ∇∗x∗ ·
(〈
D∗2
(
I + ∇∗y∗χ∗

)〉f ·∇∗x∗c∗2

)
−
|∂Y ∗fs|
|Y ∗f |

(k∗2c
∗
2 − k∗1c∗1)

(71)

where χ∗ is the solution of the classical local problem for di�usion (38).

It should be noted that such a result can also be obtained from a classical homog-
enization procedure [15].
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7. Conclusions

A multiscale procedure has been developed to model the di�usion/reaction pro-
cesses of two species in a periodic porous medium based on a spectral approach.
The initial pore-scale problem is transformed into an auxiliary problem by expand-
ing the concentrations in a series of eigenfunctions related to the spectral problem
de�ned on the unit cell. The homogenization technique is then used to upscale
the local problem to obtain the macroscopic laws. Three di�erent cases, predomi-
nant reaction, reaction and di�usion of the same order of magnitude and dominant
di�usion are studied.
For predominant reaction with a Damköhler number of order O(ε−1), the macro-
scopic equations exhibit a complex behavior characterized by a source term de-
pending on the reaction rates introduced through the �rst non-zero eigenvalue and
by coupled di�usion terms. If only the �rst null eigenvalue λ0 = 0 is considered,
the result of the classical homogenization procedure is recovered but the chemical
equilibrium is then imposed everywhere in the �uid phase. Therefore, the clas-
sical homogenization procedure fails to predict the di�usion/reaction behavior at
short reaction times. The correction induced by taking into account the non-zero
eigenvalues allows us to overcome this di�culty. The proposed model is able to
capture complex phenomena at short times when the chemical equilibrium is not
established.
When the reaction time is of the same order as the di�usion time, i.e. DaL =
O(ε0), macroscopic mass conservation laws are similar to the preceding �rst case
(DaL = O(ε−1)). The only slight di�erence comes from the closure problems for
the di�usivities where no coupled term between both species at the interface is
present.
When the reaction is slow and the di�usion dominates, the spectral approach and
the classical homogenization procedure give the same result. The macroscopic laws
have a source term depending only on the speci�c area, reaction rates and average
concentrations. The e�ective di�usion coe�cients are independent of the reaction
rates.
In future work, numerical simulations will be performed to show the potential of
the current multiscale approach. Moreover, the convection problem will also be
considered in the extension of this work.

Acknowledgment : The authors would like to express their sincere thanks to
the NEEDS program for having supported this work.
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Appendix A. On the orthogonality of the eigenfunctions

Let us consider again the spectral problem (3) without superscript to simplify the
notation 

−∇ · (D1∇ψ1,m) = λmψ1,m in Yf
−∇ · (D2∇ψ2,m) = λmψ2,m in Yf
−D1∇ψ1,m · nfs = k1 ψ1,m − k2 ψ2,m at ∂Yfs
−D2∇ψ2,m · nfs = k2 ψ2,m − k1 ψ1,m at ∂Yfs.

(A.1)

We consider two eigenvalues λm et λn and the corresponding eigenfunctions ψ1,m

and ψ1,n for the �rst species associated with the concentration c1. For the sake of
simplicity, assume that the di�usion coe�cients are constant5 on Yf . We have{

D1∇2ψ1,m = −λmψ1,m

D1∇2ψ1,n = −λnψ1,n.
(A.2)

By multiplying the �rst equation by −ψ1,n and the second one by ψ1,m, integrating
over the �uid phase of the unit cell and summing the two equations, we get for
n 6= m∫

Yf

(
−D1ψ1,n∇2ψ1,m +D1ψ1,m∇2ψ1,n

)
dV = (λm − λn)

∫
Yf

ψ1,m ψ1,ndV. (A.3)

The left-hand side transforms into∫
Yf

(
−D1ψ1,n∇2ψ1,m +D1ψ1,m∇2ψ1,n

)
dV =

D1

∫
Yf

[∇ · (ψ1,m∇ψ1,n)−∇ · (ψ1,n∇ψ1,m)] dV

= D1

∫
∂Yf

[ψ1,m∇ψ1,n − ψ1,n∇ψ1,m] · nf dS (A.4)

where ∂Yf = ∂Yfe ∪ ∂Yfs. By periodicity, the integral vanishes on the external
boundary ∂Yfe. Accounting for the boundary condition on ∂Yfs, we get from (A.3)

(λm − λn)

∫
Yf

ψ1,m ψ1,ndV =

∫
∂Yfs

[ψ1,m (−k1ψ1,n + k2ψ2,n)

+ψ1,n (k1ψ1,m − k2ψ2,m)] dS

= k2

∫
∂Yfs

(ψ1,mψ2,n − ψ1,nψ2,m) dS. (A.5)

5A generalization to non-uniform di�usion coe�cients does not present any di�culty.
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Applying the same procedure for ψ2,m and ψ2,n yields

(λm − λn)

∫
Yf

ψ2,m ψ2,ndV = k1

∫
∂Yfs

(ψ1,nψ2,m − ψ1,mψ2,n) dS. (A.6)

Combining relations (A.5) and (A.6), we obtain the orthogonality condition for
n 6= m ∫

Yf

(k1ψ1,m ψ1,n + k2ψ2,m ψ2,n) dV = 0. (A.7)

Finally, taking into account the normalization condition (31) for the eigenfunctions

k1

〈
ψ2

1,n

〉f
+ k2

〈
ψ2

2,n

〉f
= k1 + k2. (A.8)

The orthogonality condition for the eigenfunctions is written for (n,m) ∈ N2:∫
Yf

(k1ψ1,n ψ1,m + k2ψ2,n ψ2,m) dV = (k1 + k2) δmn. (A.9)

Appendix B. Importance of the �rst eigenvalue

At the main order for the concentrations, omitting the superscripts ∗ and (0), as
v0 only depends on (t,x) according to results6 1 and 2, we have from (5)


c1(t,x,y) =

√
k2

k1

v0(t,x) +
∞∑
n=1

ψ1,n(y) exp (−λnt)vn(t,x)

c2(t,x,y) =

√
k1

k2

v0(t,x) +
∞∑
n=1

ψ2,n(y) exp (−λnt)vn(t,x).

(B.1)

Let us specify the initial values of vn(0,x) (0 ≤ n ≤ ∞) from the initial conditions
for c1 and c2

c1(0,x,y) =

√
k2

k1

v0(0,x) +
∞∑
n=1

ψ1,n(y)vn(0,x)

c2(0,x,y) =

√
k1

k2

v0(0,x) +
∞∑
n=1

ψ2,n(y)vn(0,x).

(B.2)

6Results 1 and 2 have been obtained for moderate and high values of Damköhler number. For

low values of Damköhler number, v
(0)
1,n and v

(0)
2,n depend on y as well (Result 3) and this analysis

is not valid.
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Averaging the two above equations on Yf , accounting for the compatibility condi-
tion of the spectal problem (3)

〈ψ1,n〉f + 〈ψ2,n〉f = 0, (B.3)

we obtain

〈c1(0,x,y)〉f + 〈c2(0,x,y)〉f =

(√
k2

k1

+

√
k1

k2

)
v0(0,x). (B.4)

For n 6= 0, let us multiply the �rst equation (B.2) for c1 by k1ψ1,m and the second
equation for c2 by k2ψ2,m. By integration on the �uid domain Yf , accounting for
the orthogonality condition (A.9) and the compatibility condition (B.3), we get

vn(0,x) =
〈k1ψ1,nc1(0,x,y) + k2ψ2,nc2(0,x,y)〉f

k1 + k2

. (B.5)

If the initial conditions c1(0,x,y) ≡ cini1 (x) and c2(0,x,y) ≡ cini2 (x) are uniform
in each cell (the initial distribution of the concentrations does not depend on y),
we have using the compatibility condition (B.3)

vn(0,x) =
k1c

ini
1 (x)− k2c

ini
2 (x)

k1 + k2

〈ψ1,n〉f . (B.6)

Finally, it is important to note that, due to the relation (B.3), the total concentra-
tion of the two chemical species is only given by the �rst term of the development
(B.1)

〈c1〉f + 〈c2〉f =

(√
k2

k1

+

√
k1

k2

)
v0(t,x) (B.7)

whereas the deviation from the chemical equilibrium is given by

k1 〈c1〉f − k2 〈c2〉f =
∞∑
n=1

(
k1 〈ψ1,n〉f − k2 〈ψ2,n〉f

)
exp (−λnt) vn(t,x)

=
∞∑
n=1

(k1 + k2) 〈ψ1,n〉f exp (−λnt) vn(t,x). (B.8)

It clearly appears from (B.8) that deviation from chemical equilibrium at the main
order is given by the �rst non-zero eigenvalue λ∗1, which is the smaller one, due to
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the fast exponential decay for the larger ones. That is the reason why in Results
1 and 2 only the �rst non-zero eigenvalue λ∗1 has been considered. Moreover,
expression (B.8) reveals that if only the �rst zero eigenvalue λ∗0 = 0 is considered
in the homogenized models, the chemical equilibrium is instantaneously imposed
as the right hand side of (B.8) vanishes. That is in contradiction with the physics
at (very) short times.
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