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Abstract.

Objective: Numerical modeling of electric fields induced by transcranial alternating

current stimulation (tACS) is currently a part of the standard procedure to predict and

understand neural response. Quasi-static approximation for electric field calculations

is generally applied to reduce the computational cost. Here, we aimed to analyze and

quantify the validity of the approximation over a broad frequency range. Approach:

We performed electromagnetic modeling studies using an anatomical head models

and considered approximations assuming either a purely ohmic medium (i.e., static

formulation) or a lossy dielectric medium (quasi-static formulation). The results were

compared with the solution of Maxwell’s equations in the cases of harmonic and pulsed

signals. Finally, we analyzed the effect of electrode positioning on these errors. Main

Results: Our findings demonstrate that the quasi-static approximation is valid and

produces a relative error below 1% up to 1.43 MHz. The largest error is introduced

in the static case, where the error is over 1% across the entire considered spectrum

and as high as 20% in the brain at 10 Hz. We also highlight the special importance of

considering the capacitive effect of tissues for pulsed waveforms, which prevents signal

distortion induced by the purely ohmic approximation. At the neuron level, the results

point a difference of sense electric field as high as 22% at focusing point, impacting

pyramidal cells firing times. Significance: Quasi-static approximation remains valid in

the frequency range currently used for tACS. However, neglecting permittivity (static

formulation) introduces significant error for both harmonic and non-harmonic signals.

It points out that reliable low frequency dielectric data are needed for accurate tCS

numerical modeling.

Keywords: Electromagnetic dosimetry, finite element method (FEM), tissue dielectric

properties, transcranial alternating current stimulation (tACS).
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1. Introduction

Transcranial current stimulation (tCS) is a non-invasive brain stimulation (NIBS)

technique involving either direct (tDCS) or alternating currents (tACS), which are

applied to the scalp with a fraction of the current reaching the cortex. The interest about

this technique is rapidly growing since tCS is a safe, cost-effective, and compact NIBS

technology enabling home use with appropriate hardware [1]. Previous studies have

suggested its potential to improve conditions related to several neurological disorders

such as depression [2], stroke [3], and Parkinson’s disease [4]. The potential of tCS to

enhance physiological cortical function has also been explored in healthy volunteers [5].

The regain in popularity of tCS began in the 2000s with results showing that tCS

increases cortical neurons excitability [6], which motivated the study of mechanisms

involved at the cellular level. Pharmacological mechanisms have been studied, and

significant changes induced by tDCS were demonstrated [7, 8, 9]. Furthermore,

electrophysiological studies have shown that the neuronal membrane depolarization

induced by the exogenous electric field is proportional to the field magnitude [10]. This

was supported by modeling studies with realistic cortical neurons [11]. The induced

electric field magnitude in the brain is typically in the 0.1–1 V/m range for a standard

protocol with a maximum intensity of 2 mA corresponding on average to 0.12 mV per

V/m of depolarization at the neuron level [12]. However, a membrane depolarization of

the order of 20 mV is required to trigger an action potential, which is considerably

higher as compared to the tCS-induced depolarization [13]. Some of the putative

neuromodulation mechanisms include the modulation of the initiation timing of action

potentials in the case of tDCS, and a facilitation of phase synchronization for tACS

[14]. Initially, simple spherical head models have been used to provide a generalized

view of tDCS mechanisms [15, 16] with a progressive shift towards more anatomically

accurate shapes [17]. Finally, various accurate MRI-based models of the head have been

implemented [18, 19].

Electric field distribution is generally computed numerically using, for instance,

a finite element method (FEM) [15, 16, 17, 18, 20]. The quasi-static approximation

(QSA) – assuming that the coupling between electric and magnetic fields is negligible –

is commonly used to model the induced electric fields of tCS [21]. In this approximation,

there is no electromagnetic (EM) wave propagation. This is equivalent to the assumption

that the wavelength is significantly larger as compared to the considered region size;

therefore, the EM field phase variation is negligible across this region. This assumption

is appropriate for tACS as it is mainly used at frequencies below 5 kHz [22] with

free-space wavelengths in the order of 60 kilometers. However, the guided wavelength

inside a dielectric medium is inversely proportional to the square root of the relative

permittivity, which can be as high as 106 at this frequency for biological tissues [23, 24].

This results in reduction of the wavelengths by a factor 103 therefore affecting the range
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of validity of QSA. The second assumption is that electromagnetic induction can be

neglected, which is valid since wave propagation effects can be ignored [25]. The third

commonly used assumption consists in neglecting the capacitive effect of tissues [25],

i.e., considering biological tissues as purely ohmic (i.e., neglecting the displacement

electric field in Maxwell–Ampere’s equation). A forth hinted assumption, which is not

often quoted, is to consider non-dispersive electrical properties (neither conductivity nor

permittivity is time/frequency dependent). These all four assumptions are those usually

referred as quasi-static in the field of tCS and sometimes are suggested by referring to

Laplace equation.

However, the last two assumptions are the most questionable ones [21], since

biological tissues were shown to have high relative permittivities – especially at

low frequencies – and also strong dispersion [26]. In theoretical and applied

electromagnetics, the general QSA, also called electro-quasi-static, considers only the

first two assumptions, which enforces to still solve the Laplace equation, but the

three first assumptions together are equivalent to the static case (or quasi-stationary

conduction) [27, 28]. We will hereafter denote this case as ”static” approximation. In

the case of the general QSA, the electrical properties of the dielectric medium act as

a filter. The impedance becomes complex and therefore alters the shape of temporal

waveforms [24, 29].

In the case of deep brain stimulation (DBS), this can affect the volume of tissue

activated: an overestimation of about 18% occurs considering only ohmic medium [30].

The relative error of QSA in the electric potential analysis in the case of deep brain

stimulation (DBS) is about 3% to 16% depending on the pulse duration [29]. A point

source in an infinite, homogeneous, and isotropic volume was used for the analysis in

[29], and the general (full-wave) solution was compared to the static approximation.

Higher frequency spectra (and, therefore, shorter wavelengths) are being

increasingly considered to improve the control of the fields induced in the head.

Examples of such techniques include intersectional tDCS to reduce the heating of

scalp tissues [31] or temporal interference to target deeper brain regions using tACS

[32, 33, 34]. However, the approximation-induced computational errors are proportional

to the operating frequency and can be significant [35]. To the best of our knowledge, no

comprehensive error analysis has been performed for tCS in the case of heterogeneous

realistic head models and realistic scenarios.

In this study, we analyze and quantify the errors introduced by static and quasi-

static approximations of tCS, as compared to the solution of Maxwell equations (full

wave, denoted as FW hereafter). We first quantify the error induced by purely ohmic

(i.e., static) and QSA approaches using 3D and 2D anatomical models of the human

head for harmonic signals up to 100 MHz. The effect of uncertainty of low-frequency

tissue properties on the computed error is considered next. In Section 3.3, we assess

the impact of electrodes placement. Time domain signals are considered in Section 3.4

for comparison with previous findings and for new stimulation protocols. Finally, we

compute the impact of the error at the neuron level using biophysically realistic neuron.
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2. Methods

2.1. Head model

In order to evaluate the accuracy of the QSA, we first formulate a head model geometry

and then numerically compute and compare the fields using both types of QSA and

FW. The model geometry is based on the ICBM152 [36] set of MRI segmented using

the SimNIBS headreco routine [37]. The resulting model consisted of five domains

representing five main tissues commonly used to perform electric field modeling in a

head: white matter (WM), grey matter (GM), cerebrospinal fluid, skull, and skin.

All these domain are represented as a set of 3D surface meshes representing its outer

boundary, forming the 3D geometrical model.

The 2D model was created using a slice from the segmented images was selected

to represent the properly the geometrical complexity of the brain (gyri and sulci). Note

that the final 2D model (figure 1b) should be seen as invariant by translation along the

z–axis. Clearly, it is a simplification of the human head that strongly varies along this

dimension. However, this model has the advantage to enable the quantification of the

relative error on the modeled electric field for different formulations, while also being

computationally efficient. Since the QSA error is roughly a function of the ratio of the

model dimensions a to the wavelength λ(ε) [25], the use of this simplified model for

QSA error analysis is supported by the fact that the last dimension, along the z axis, is

theoretically infinite as aforementioned. However the results has to be further validated

with on the 3D model (see section 3.1.).

The two models were imported into COMSOL Multyphysics (COMSOL Inc., MA,
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Figure 1. Geometrical models of the head. (a): 3D model head model (with sagittal

cut). The axial cut plane shown was used to build the 2D model.(b): 2D brain model

including the segmented brain tissues. The tACS montage (position of electrodes and

intensity applied at each electrode), dimension of the model and tissues modeled are

illustrated.
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USA), which was used for the field computation and error analysis. Two cylinders of

1-cm-diameters represented the contact gel for compact electrodes and were placed over

the FC6 and F2 positions (figure 1a; placement according to the international EEG

10-20 system [38]). The electrodes were represented as semi-rectangular domains in

the 2D model (figure 1b). Electrodes were modeled in terms of corresponding Dirichlet

boundary conditions on exterior edge of the gel [39].

Finally, the surface mesh was generated using an L2 norm of error squared based

mesh refinement in COMSOL Multiphysics, which lead to 125k triangular elements for

the 2D model. The 3D model was meshed with 5.31M tetrahedron elements. The

smallest element edge was 0.5 mm and the largest one was 5 mm. This ensures

convergence while having maximum element size much smaller than one tenth of the

wavelength in each tissue for the highest considered frequency of 100 MHz.

2.2. Electric field modeling

The electric field analysis requires a prior specification of the tissue dielectric properties

[conductivity σ (S/m) and relative permittivity εr]. Since this study requires taking

into account the dispersion due to the wide frequency range of interest, we choose the

established four-region Cole–Cole model with the coefficients tabulated by S. Gabriel

and co-workers [40] since it i) accounts for dispersive effects of tissues, ii) allows to

quantify the error introduced by neglecting the relative permittivity, iii) satisfies the

required Kramers–Kronig relationship [41]. The conductivity of the contact gel was set

to 1.4 S/m [42] and the relative permittivity to 80 as salt water. Note that another

important factor that might influence the estimated errors are the assumptions about

the tissue electric properties. The low-frequency values (i.e., DC to tenth of kHz) found

in the literature vary considerably [43], sometimes almost one order of magnitude, due

to different conditions of the tissue and different ways of measuring. In particular, this

set of conductivities is reported to deviate from literature in the low frequency range. To

analyze the effect of dielectric properties variation on the relative error, we performed

the analysis at 10 Hz with some of the extreme cases reported in literature to indicate

the range of electric field variation due to dielectric properties uncertainty.

The first formulation tested is the most used for tCS: the static formulation that

neglects the propagating effect (λ ≪ a) as well as the capacitive effect of tissues, i.e.,

the contribution of the relative permittivity (σ ≫ ωεr). The second is the quasi-static

(QS) formulation, which only neglects the propagative effects, but not the permittivity

contribution since the ratio between σ and εr (representing the dielectric relaxation

time) is not negligible as compared to the typical variations of the electric field. This

is also equivalent to considering a complex conductivity σc = σ + jωεr. The third and

the most general formulation consists of solving the inhomogeneous wave equation for

the electric field, which is equivalent to solving the full set of Maxwell equations or full

wave formulation (FW).
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For both static and QS formulations, the Laplace equation for the electric potential

V [∇ · (σc∇V ) = 0] was solved providing boundary conditions as follows:

• A Dirichlet boundary condition to model the ground (or cathode, V = 0);

• A modified Dirichlet boundary condition (terminal boundary condition) on the

anode, which imposes a constant current source (
∫
J · dS = 0) with a calculated

fixed potential;

• An insulation boundary condition (Neumann) J · dS = 0 on the remaining

boundaries to model the skin–air interface.

A stabilized formulation at low frequency (below 1 MHz) was used in FW

computations, which is similar to the one described in [44, 45] since common FW

formulations are known to be unstable at low frequencies [46, 47]. The wave equation

was decomposed into electric and magnetic vector potentials and solved on potentials

rather than on the field directly. This formulation consists of solving Maxwell–Ampere’s

equation along with its divergence on electric and magnetic vector potentials, and

appropriate boundary conditions as previously described supported with a Dirichlet

boundary condition on the magnetic vector potential (A× n = 0).

The three formulations were solved on a mesh containing over 289k triangular

elements for the 2D model and 5.31M of tetrahedrons elements for the 3D model.

MUMPS numerical solver was used to solve the linear system for the frequency range

from 10 Hz to 100 MHz with 10 values per decade and with a relative tolerance of 10−6 for

the 2D model. For the 3D model, appropriate iterative solvers formulation (Conjugate

Gradient for static, BiCStab for QS and GMRES for FW) were used according to

the formulation, with a relative tolerance of 10−6. Finally, the relative error of the

imposed approximation was computed using η12 = ||E1 − E2||/||E1|| where 1 denotes

the reference, being either FW when compared to the other formulations, or QS to

compute the relative error between static and QS. The resulting error was computed

over the whole numerical domain for each frequency, and the following metrics were

computed: minimum, maximum, 2.5th quantile, 97.5th quantile, and mean.

An additional study was performed to account for the electrode positioning. The

skin contour curve, defined by the two coordinates (x, y), was interpolated according to

the angle θ defined by the three following points: the fixed point in the frontal part of

the head representing the cathode’s center, the center of the head and a third moving

point on the contour. The latter represents the center of the anode which was moved

to study the influence of the placement. See section 3.2 for the schematic of the setup.

2.3. Time domain waveform and harmonics

Despite the typical use of sinusoidal signals in the case of tACS, temporal waveforms

analysis might be useful for the elaboration of new techniques relying on waveform

shaping to optimize the current delivery or even for shorter pulses used in intersectional
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tDCS (IS-tDCS) [31]. Once the electric field was computed for each formulation, the

electric field values were exported from Lagrange’s points (vertices) of the mesh [48]. A

post-processing routine was developed to convert these frequency-domain data into the

time domain using Fourier series as:

s(t) =
∑

n

cne
2iπtfn + c−ne

−2iπtfn ,

where fn is the frequency of the nth harmonic and cn the associated Fourier’s coefficient.

Fourier series were used to compute the electric field for typical time domain waveforms

used for DBS, namely monophasic and biphasic pulses. Pulse parameters were chosen

in accordance with typical DBS waveform parameters: pulse duration was 90 µs, and

the frequency was set to 130 Hz, which was comparable to the values used in [29], with

the same highest harmonic at 500 kHz and a sampling frequency of 1MHz. Then, the

relative error was computed in the time domain in the same way than in the frequency

domain, for each time step between 0 to 400 µs.

2.4. Impact on neuromodulation

Electric field modeling during tACS is commonly accompanied by radial electric field

calculation from the EF distribution [11]. This radial EF (EF component normal to

the cortex surface) represents the EF along the pyramidal cells, which have a strongly

preferential orientation normal to the cortex and are organized. These cells showed

the highest membrane polarisation due to the electric field with a direction parallel to

their somato-dendritic orientation [10], which makes it a measure of tCS effect. The

radial electric field error was assessed similar to the previous relative error metric as

η12 = ||Er1|−|Er2||/|Er1|. The variation from the previous relative error formula was the

difference of absolute values, i.e., the radial EF amplitude without taking into account

the phase difference. The impact of tACS was located at the cortex level where the

field is the highest. The 98th EF quantile was computed over the cortical surface, and

points with higher EF were selected to compute the radial relative error where accurate

values are needed to predict the effect at the neuron level. We additionally assessed the

same metric for the tangential component and the resulting angle between the electric

field and the normal directions to the surface of the gray matter. Finally, the phase

difference between the different formulations was quantified since the phase term could

have impact on phase activity [49] and is supposed to not vary with location in the

common static case.

To highlight the importance of these results, we performed neural modeling with a

realistic neuronal model [50] using the established NEURON software [51]. Pyramidal

cell from the 5th cortical layer was used as it was demonstrated to be responsive to a

10 Hz tACS [52]. The same mechanisms and setup were used as in [52]: a synaptic

input was chosen to generate a 5Hz activity and the extracellular mechanism was used

to input the EF in the form of potential. A 10 Hz tACS was used and values of EF
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were set using radial relative error results. Three simulations were performed for three

different EF amplitudes: 1.00 V/m as the reference, the additional average error on

the radial field, and the maximum one. Each simulation consisted of 140 seconds: 10

seconds of off stimulation and 2 minutes of on tACS and 10 seconds of off tACS. Then,

the phase-locking value (PLV) was computed to quantify the impact of tACS on neuron

firing times, along with polar plots to quantify the timing influence of the stimulation.

3. Results

3.1. Relative error spectrum

Electric field maps were calculated over the considered frequency range, and the 97.5th

and 2.5th quantiles in addition to the mean relative error are illustrated in figure 2.

Both the relative error between FW and QS (ηFWQS) and between static and QS (ηSQS)

are represented for the 2D and 3D models for the FC6–F2 montage. The relative

error between FW and static, ηSFW, is not shown because it is overlapping with ηSQS

since ηFWQS ≪ ηSQS. The results for 2D and 3D models are in very good agreement,

which validates the use of the simplified 2D model for the subsequent studies requiring

prohibitive computations over the 3D mesh. The average of ηSQS was over 20% in brain

tissues within the frequency range of 10–40 Hz – a common range used for tACS since

it corresponds with the frequencies of physiological brain oscillations (and so is ηSFW).

In contrast, ηFWQS increases with frequency and crosses the 1% error line in the MHz

range. Table 1 summarizes 1%, 5% and 10% limits for the multiple metrics described in

the previous section. These metrics can be used to define the range of the QSA validity,

depending on the error level that should not be exceeded.

Table 1. Frequencies (MHz) at which the minimum, maximum, mean, 2.5th and

97.5th quantiles FW to QS relative error cross 1%, 5%, and 10%, respectively

ηFWQS Min q2.5 Avg q97.5 Max

1% > 100 28.16 5.13 1.43 0.81

5% > 100 86.63 17.04 5.92 3.74

10% > 100 > 100 27.97 10.04 6.71

3.2. Effect of dielectric properties variability

The high relative error between static and quasi-static formulations is mainly due to the

low values of electric conductivities of brain tissues in the used set of dielectric values.

To investigate the range of SQS relative error over the range of conductivities reported

in the literature, we performed the simulation at 10 Hz with the extreme dielectric

properties for GM, WM, skull, and skin. As the reported values of CSF do not vary

significantly, we kept the conductivity and relative permittivity values at 1.654 [S/m] and
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Figure 2. (a): Relative error spectrum between quasi-static and full wave approaches

(ηFWQS) and between static and quasi-static (ηSQS), f being the frequency. The mean

error, the 97.5th and 2.5th quantiles for both ηFWQS and ηSQS with solid lines for the

2D model while the crosses represent the results for the 3D model. The 1% percent

error line is shown and intersections between the 97.5th and 2.5th quantiles for ηFWQS

is depicted as dotted red lines at 1.43 MHz and 28.16 MHz, respectively. (b) to (f):

ηSQS in each tissue layer (in the order: WM, GM, skin, skull and CSF) for the 2D

model (solid lines and quantiles) and 3D model (crosses).

102, respectively, throughout this analysis). For GM, WM, skull, and skin, the range of

conductivities was taken from [43]. On the other hand, the relative permittivities were

set with reasonable extreme values due to the lack of litterature data on this parameter

in the Hz range. All the considered values are presented in the table 2.

The distributions of the mean error, depicted figure 3, show higher errors for higher

relative permittivity and lower conductivity, which is in agreement with the change in

effective conductivity σc = σ + jωε. It can also be observed that bimodal distributions

occur when using minimum relative permittivities and maximum conductivities for brain

Table 2. Extreme dielectric properties used to asses the range of SQS relative error

at 10 Hz.

σ GM σ WM σ Skull σ Skin εr GM εr WM εr Skull εr Skin

min 0.06 0.0642 0.0182 0.137 105 105 103 102

max 2.47 0.81 0.28 2.1 108 108 105 104
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Figure 3. Mean SQS Relative error at 10 Hz for all the extreme conductivity and

relative permittivity values combination. The blue boxes represent the distribution

for all the case where the maximum value of the property was used while the red

correspond to the cases where the minimum value was used.

tissues. This is mainly due to the fact that the ratio between ωεr and σ is at maximum,

which occurs when the conductivity and permittivity values are both at their minima

or maxima. These results show a possible relative error at 10 Hz bounded between

2.10−3% to 41.9% depending on the considered properties and further confirms the need

of reliable measurement of tissue dielectric properties in the sub-kHz frequency range.

3.3. Influence of electrode positioning and size

Next, we investigated the influence of the electrode montage on the approximation error.

The relative error variation was quasi symmetrical with respect to the θ = 180◦ axis.

This motivated to choose a parameter varying as symmetrically such as the euclidean

distance between the spatial positions of the two scalp electrodes, denoted as d (see

figure 4a and 3c. Figure 3b depicts that the relative error between QS and FW decreases

as the distance between the two electrodes increases.

Conversely, ηSQS has non monotonic variations at low frequency (below 10 kHz).

In the 10–100 Hz range, the error is higher with proximal electrodes but the effect is

reversed in the kHz range as illustrated figure 4d. The increase of ηSQS at the skin

level in the kHz can explain this since the current is more distributed in skin when the

electrode are more spaced. Conversely, with proximal electrodes, the electric field is

less distributed in skin and the error is more represented by the one in the GM at low

frequency.

This study considers �1 cm electrodes. In order to evaluate if the error is affected
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Figure 4. (a): 2D model with the angle defining the position of the anode by

reference to the cathode position. (b): Relative error between FW and QS (ηFWQS) as

a function of the distance (d) between anode and cathode in the 1–100 MHz range. The

distance between the two electrodes is taken as the vertical axis, while the frequency

f in log space in horizontal axis. (c): x and y coordinates of the skin curve depending

on theta and the associated euclidean distance. (d): Relative error between static and

QS (ηSQS) in the 10-Hz–10-kHz range, as illustrated with the previous plot.

by the electrode size, we performed an additional analysis with �2 cm as it is another

standard size for circular electrodes. No sensible variation in error was found, which

indicates a negligible effect of the electrode size on QSA validity.

3.4. Error for typical time-domain waveforms

Using the Fourier’s series decomposition, the time domain relative error between QS

and FW remained below 1% for both square and biphasic pulses; figure 5 demonstrates

the general trends. The error was higher before and after the pulse with the highest

values during the ascending and descending parts of the pulse, and smaller one during

the positive phase of the pulse. This might originate from the difference in phase with

the zero crossing of the finite harmonics signal. This is even more pronounced in the

case of ηSQS, which is tremendous due to zero crossings occurring at different times for
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Figure 5. (a)–(b): 97.5th highest electric field norm (||E||) in grey matter for

monophasic (a) and biphasic (b) pulses in Static and QS cases. (c)–(d): Average

relative error between FW and QS (ηFWQS) in the time domain for (c) a monophasic

pulse as a stimulus, and (d) a biphasic pulse, with the 2.5th to 97.5th quantile margin.

The stimulus is represented in red with its corresponding second axis. (e)–(f): As

(c)–(d) for the case of relative error between Static and QS (ηSQS). (g)–(h): Norm of

the difference of the 97.5th quantile electric fields (δSQS) in the grey matter.
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Static and QS. Since it is mainly due to error in phase, it does not reflect properly

the amplitude error, which is only represented during the positive phase of the pulse

(and down state for the biphasic pulse), where the signal does not cross zero. This

further justifies the choice made by Bossetti et al. [29] to represent the relative error

only during positive state of the pulse. However, it does not highlight the error during

at pulse termination which is substantial. Figure 5 shows that the results are in good

agreement with [29], at least at the brain level where ηSQS decrease from 14% during

the first part of the pulse positive phase while increasing during the second part and

flare-up at the pulse termination. This is mainly due to the zeros crossing of the pulse

due to Gibb’s phenomenon. The norm of the difference between the compared electric

field does not suffer from the aforementioned limitations and quantify an error in electric

field unit. It is directly related to the amount of EF which is not present at the neuron

level, and proportional to the membrane depolarisation. Figure. 4g and 4f illustrate this

difference in electric field norm in the case of the 97.5th highest electric field, which is

the zone where stimulation has the greatest impact. This difference is of the same order

of magnitude than the electric field itself, which is significant and represents a difference

of 22.7% with the maximum value of the positive phase for a monophasic pulse (Static

case) and 42.9% for the biphasic pulse.

Figure 6. SQS relative error (ηSQS) during the monophasic pulse up-state in the GM.

The horizontal axis is the time t relative to the beginning of the pulse (0 being the

start of the pulse). The mean value is plotted as a solid line and the margin represent

the 97.5th and 2.5th quantiles.

3.5. Radial relative error

The radial, tangential and angle relative errors computed on the highest 2% EF values

over the cortical surface shows similar trends as over the full gray matter domain; The

results are presented in figure 7 where the min–max margins over the 2D models and

crosses for the 3D model are shown for all the six resulting errors. The curve for the

average relative errors over the full cortex (all the EF values) are plotted as the green

dashed line and is encompassed by the margins for ηSQS while it is slightly above the

maximum in the case of the FWQS radial relative error. At 10 Hz, which is a common

frequency used for tACS [52], the average radial relative error for the 2% highest EF was

about 6% while the maximum reached 22% in the case of SQS. The tangential relative

error is higher with an even larger maximum in the full spectrum [figure 7(c) and (d)].
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The average error (solid line) share same trend. Note that this higher maximum error

can be due to the small absolute values of tangential field compared to the radial one,

and relative error metrics are more sensitive to small field values. As a consequence,

this impacts the error on the field orientation (angle between radial and tangential

fields), which share the same trend. For the FW to QS, the average radial relative error

remained below 1% until 10 MHz, while the tangential and angle relative errors cross

the line at 7.24 and 5.01 MHz, respectively.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Radial relative error between static and QS predictions (a) and between

QS and FW (b). The continuous and dashed lines correspond to the 2D model results

while the crosses represent the average radial relative error in the 3D model. The

dashed green lines represent the average radial relative error over the full cortex. The

same applies to tangential relative error for SQS (c) and FWQS (d) as well as for the

angle SQS (e) and FWQS (f) relative errors

Finally, the phase error is depicted figure 8 and shows the same trends as previous

cases. To quantify the phase error, we use absolute absolute difference in radians between

1) QS and static [SQS in figure 8(a)] and 2) FW and QS [FWQS, figure 8(b)]. The

average of SQS phase difference is up to π/8 in the 10–100 Hz frequency range. Its

maximum is up to π/4, which represents a non-negligible phase difference from the

neuromodulation point of view. Specifically, the neuron populations are stimulated

with different phases depending on their location, which static approximation neglects.

However, in the FWQS case, the phase difference is quite negligible and increase log-

linearly to cross a 1% difference at 13.18 MHz.

3.6. Effect of tACS on single neuron activity

Using the previous results as an input for neural activity modeling of the selected

pyramidal cell, the neural activity during tACS was computed with 1.00, 1.06 and
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(a) (b)

Figure 8. Phase difference (in radians) between static and QS, δφSQS (a) and FW

and QS, δφFWQS (b).

1.22 V/m. All spike timing event were saved and then used to compute the distribution

of spikes occurring in the same range of tACS waveform phase. The corresponding

polar plots are depicted in figure 9 with the neuron morphology. The distributions are

close to each other since the sub-threshold input due to the extracellular field has little

effect [12]. However, the calculated PLV for each amplitudes are 0.0640, 0.0716, and

0.0798, respectively, which correspond to a 10.48% increase in PLV for the average radial

relative error and 19.66% increase for the maximum one. These results show the need of

reliable EF predictions and the impact of taking into account the relative permittivity.

1 V/m 1.06 V/m 1.22 V/m

E

Figure 9. Polar plots of the phase of spike occurrences distributions for the three

different EF amplitude. The morphology is depicted in the left part with the direction

of the input EF. Polar histograms correspond to event counts while the red line is the

phase of the average vector.

4. Discussion

The major goal of this study was to assess the frequency-dependent accuracy of static

and QS approximations commonly used in the tCS numerical analysis. We evaluated

the tCS-induced electric fields in heterogeneous anatomical models for static, QS, and

FW approximations. In terms of the error limits, the QSA 1% error limit stands up to
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the MHz range exceeding 1% at 5.16 MHz for the mean and at 1.43 MHz for the 97.5th

quantile. This agrees well with the literature, where the limit at 1% was identified using

a plane wave illumination at 10 MHz [53]. In terms of the error between two possible

QSA formulations – depending on whether one neglects the capacitive effect of tissues

– we demonstrated, for the first time, that ηSQS is significant and even exceeds ηFWQS in

the case of tCS. This is an important takeaway, since the inclusion of capacitive effects

in the model does not significantly increase computational costs, especially as compared

to a computationally expensive FW approach.

The FWQS relative error shows a linear-log increase over the frequency spectrum,

as expected, since it is often quantified as being proportional to ω2 [54], confirming

the validity of QSA below the MHz range without neglecting capacitive effects. The

interpretability of the SQS relative error is less straightforward, since it is mainly due to

the change in the current distribution that is affected by the intrinsic impedance change.

Note that in the low frequency range, in which tACS is currently performed (10–100 Hz),

the SQS relative error is about 20% for the 3D model, and it increases up to 50% for the

97.5th quantile of the 2D model (figure. 2c) in the brain. In high EF intensity areas, i.e.

where brain is stimulated, this error can be as high as 22% in the radial direction which

therefore affects the firing times of pyramidal cells as demonstrated here. We hope that

these results should encourage to consider the capacitive effect of tissues even at very

low frequencies, since the relative permittivity is sufficiently high to induce significant

errors in both amplitude and phase of induced electric field. Since EEG and tES are

related by the reciprocity principle [55, 56], EEG source localization methods could also

be impacted by this error. Currently, these methods are often formulated using purely

ohmic tissues [57, 58]. However, this frequency dependence would drastically increase the

computational cost in this inverse problem. It remains an open question how considering

this frequency dependence of the permittivity would improve the performance of EEG

source localization methods. The static approach might be still preferred for highly

repetitive 3D modeling, such as the optimization of electrode placement [59]. In this

case, an additional post-optimization QSA analysis might still be useful to provide more

accurate values of electric field distribution.

The FWQS error was found to be a function of the distance between two electrodes,

however limits remained within the same range (1–10 MHz for 1% error, for example).

The distance-error dependence also affected ηSQS at low frequencies. In the EEG

spectrum domain (10–50Hz), the error decreased with distance, which can be explained

by the higher error in the brain being more represented in the average one. This even

increased the error in the case of high definition tCS, where one electrode is closely

surrounded by four others to increase focality of conventional tCS [18, 60]. This is

a technique that is mainly used at low frequency (within the EEG frequency range:

typically from DC to 100 Hz). Conversely, ηSQS increased as the electrodes were moved

away in the frequency range used for the temporal interference technique (1–10 kHz).

This is mainly due to the increase of ηSQS in this frequency range in skin where the

electric field is more distributed due to the electrode spacing.
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Finally, the computed electric field in the Fourier space (frequency domain) can

be transformed into the time domain and used to compute the corresponding relative

errors. Here, we presented two examples with 1) the monophasic pulse studied in [29] for

comparison and 2) the biphasic pulse that is a typical waveform used in brain stimulation

and, in particular, for DBS [61]. The results in the time domain suggest that the

resulting error from using QS over FW was less than 1%, validating the use of the

QSA for this purpose. This level of numerical error is lower than 13% reported by [29]

during the positive phase of the pulse. However, this difference is due to the comparison

between the Static and FW formulations. In our case, the error quantification showed a

comparable range of error in grey matter supporting the rationale to include capacitive

effects when the relative permittivity at low frequencies is high. This supports the

previous statements that neglecting the capacitive effect of tissues can be considered as

an unreasonable approximation for most cases [21, 29].

This study addressed the question of the approximation for tCS electric field

modeling in the case of a realistic head model with the main five tissues used in

the literature. The use of the Cole–Cole model can be criticized, since deviations in

conductivity have been identified at low frequencies (< 1 MHz) [40], which could be

attributed to electrode-electrolyte interface during measurements [23, 62]. This issue was

recently addressed by compensating this electrode–electrolyte interface impedance [62],

which opens the possibility to use corrected values. However, another study reported

similar range of values for relative permittivity but higher conductivities than the initial

measurements, in mice tissues [24] and is physically plausible. Purely ohmic tissue

models are plausible but singular due to Kramers–Kronig relations [41]. Still, in this

model, skin has a conductivity of the order of 10−4 S/m, whereas it is commonly set in

the 0.2–0.5 S/m range [18, 63, 64]. This could be explained by the fact that scalp tissues

are multilayered, and composed of multiple tissues with their own properties, and that

only surface skin was measured. Yet, the conductivity used in Static and QS model are

the same and we assess the QSA validity using a relative metric which is expected to be

as high, even if more current is shunted through the scalp. This illustrates further the

need for reliable values of conductivity/permittivity at low frequency, where there is a

large dispersion of values. It is also worth to point out that most values were measured

post-mortem, which can affect the results [24]. Another source of variability is inter-

individual differences in brain morphology and conductivity [65], especially since such

variability could be a larger source of error than these tackled approximations [66] and

impact substantially the electric field distribution [67]. To overcome this limitations, we

used a standardized (template) brain model, since the aim of this study was to show

the intrinsic limitations of modeling practices, and the general tendencies of the error

induced by the use of approximations, and not to extend exact values for every singular

geometric model. Finally, multiple electrodes stimulation montages could also be studied

as an extension of the present study, since electrode positioning has been shown to have

an important impact on the relative error distribution, especially comparing Static to

QS.
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5. Conclusion

This study provided an insight into modeling approximations commonly made in the

research field of tCS. We demonstrated the validity of quasi-static approximation of

Maxwell’s equations until the MHz range if the relative permittivity is considered.

However, the static approximation (i.e., purely resistive medium, no capacitive effects),

introduces significant errors in tACS modeling in both the electric field amplitude

and the phase. More importantly, static approximation assumes that the phase of

induced electric field is the same across the brain. Our results demonstrate that the

phase can vary up to π/4 across the different regions of the brain, which is significant

from the point of view of neuromodulation. Considering capacitive properties (i.e.,

relative permittivity of tissues, or, equivalently, the imaginary part of the conductivity)

is especially important for pulsed signals that contain multiple frequency harmonics.

Finally, precise knowledge of approximation-induced errors contributes to the better

accuracy of computational modeling in tCS and therefore the analysis of associated

effects at the cellular level.
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Appendix: Maxwell’s equations theory and approximations

This appendix summarizes the equations for the electric field depending on the

assumptions made in the article. We start from the general set of Maxwell’s equations

to derive the ones used in approximations stated here as ”static” and ”quasi-static.”

The four Maxwell’s equation can be written as:

∇ ·D = ρ (Maxwell−Gauss) (A.1)

∇× E = −
∂B

∂t
(Maxwell−Faraday) (A.2)

∇ ·B = 0 (Maxwell−Thomson) (A.3)

∇×H = J+
∂D

∂t
(Maxwell−Ampere) (A.4)

where D is the electric displacement field, E the associated electric field, H being the

magnetic field, which is related to the magnetic flux density B. The conservation of the

charge is obtained by taking the divergence of (A.4):

∇ · ∇ ×H = 0 = ∇ · J+
∂ρ

∂t
(A.5)

Generally, the Maxwell’s equations in time domain are computationally expensive to

solve since the solution involves time convolution with electrical properties [68]. In
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practice, the Fourier transform of the equations is computed since it involves a simple

multiplications in the generalized Ohm’s law J = σE and constitutive equations D = εE

and B = µH for linear media. This also simplifies the partial time derivatives, which

are now simple multiplications with jω. In this study, we consider biological tissues

that have a constant magnetic permeability µ = µ0 but do not have constant relative

permittivity. Considering that both σ and ε are functions of the frequency, the medium

for which the equations are solved is dispersive. This is the most general case without

any other assumption other than media linearity. Therefore, considering (A.1) and

(A.4), (A.5) can be written as:

∇×H = σE+ jωεE (A.6)

∇ · [(σ + jωε)E] = 0 (A.7)

The electro-quasistatic (EQS) approximation from the electromagnetics point of

view consists in neglecting the effect of the induction on the electric field [27, 28]. This

is reflected by the following change in (A.3):

∇× E = 0 (A.8)

It implies that E is a gradient of a scalar field, i.e., the usual relation to the scalar

potential in quasi-static: E = −∇V . At this point, considering a dielectric medium,

this results in the Laplace equation on the scalar potential by using (A.7):

∇ · [(σ + jωε)∇V ] = 0 (A.9)

This simplification involves a spatial differential equation on a scalar quantity and is

the equation solved for ”quasi-static” case as referred to in the present work. In the

neuromodulation research community, any form of Laplace equation is often cited as

being the consequence of quasi-static assumptions. Additional assumptions are also

considered to have an even simpler equation. Indeed, often no dispersion is used (no

frequency dependence of σ and ε) together with neglecting the relative permittivity, i.e.

assuming jωε/σ ≪ 1. This results in the Laplace equation on potential typically used

in tACS numerical modeling:

∇ · (σ∇V ) = 0 (A.10)

Eq. (A.10) formalizes what is commonly meant as ”quasi-static assumption” in the

neuromodulation community. Note that this contrasts with how EQS is defined in the

electromagnetics/physics community, which often relates to this equation as ”static

regime” or ”quasi-stationary conduction” [27]. Since in this study we analyze the

accuracy of both (A.9) and (A.10), we use the terms ”static” and ”quasi-static,”

respectively, in the text to distinguish these two approaches.
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Merchán-Pérez, Julie Meystre, Benjamin Roy Morrice, Jeffrey Muller, Alberto Muñoz-Céspedes,
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