A. R. Aron, The Neural Basis of Inhibition in Cognitive Control, The Neuroscientist, vol.13, pp.214-228, 2007.

A. Bari and T. W. Robbins, Inhibition and impulsivity: behavioral and neural basis of response control, Progress in Neurobiology, vol.489, pp.44-79, 2013.

M. Behrmann, J. J. Geng, and S. Shomstein, Parietal cortex and attention. Current Opinion in 491, Neurobiology, vol.14, pp.212-217, 2004.

R. Béranger, E. M. Hardy, C. Dexet, L. Guldner, C. Zaros et al., Multiple pesticide 493 analysis in hair samples of pregnant French women: Results from the ELFE national birth 494 cohort, Environment International, vol.120, pp.43-53, 2018.

C. Cartier, C. Warembourg, L. Maner-idrissi, G. Lacroix, A. Rouget et al., , p.496, 2016.

, Organophosphate Insecticide Metabolites in Prenatal and Childhood Urine Samples and 497 Intelligence Scores at 6 Years of Age: Results from the Mother-Child PELAGIE Cohort 498 (France), Environ Health Perspect, vol.124, pp.674-680

X. P. Chen, Y. S. Chao, W. Z. Chen, and J. Y. Dong, Mother gestational exposure to organophosphorus 500 pesticide induces neuron and glia loss in daughter adult brain, Journal of Environmental 501 Science and Health, vol.52, pp.77-83, 2017.

O. Collignon, S. Girard, F. Gosselin, D. Saint-amour, F. Lepore et al., Women process 503 multisensory emotion expressions more efficiently than men, Neuropsychologia, vol.48, pp.220-225, 2010.

N. Comfort and D. B. Re, Sex-specific Neurotoxic Effects of Organophosphate Pesticides Across the 506 Life Course, Curr Environ Health Rep, vol.4, pp.392-404, 2017.

V. A. Rauh, F. P. Perera, M. K. Horton, R. M. Whyatt, R. Bansal et al., Brain anomalies in children 584 exposed prenatally to a common organophosphate pesticide, Proceedings of the National 585 Academy of Sciences, vol.109, pp.7871-7876, 2012.

D. Rice and S. Barone, Critical periods of vulnerability for the developing nervous system: evidence 587 from humans and animal models, Environ Health Perspect, vol.108, pp.511-533, 2000.

M. L. Rosen, M. A. Sheridan, K. A. Sambrook, M. R. Peverill, A. N. Meltzoff et al., The Role of 590 Visual Association Cortex in Associative Memory Formation across Development, J Cogn 591 Neurosci, vol.30, pp.365-380, 2018.

P. Ruckart, K. Kirsten, B. Frank, J. , K. Wendy et al., Long-term neurobehavioral health 593 effects of methyl parathion exposure in children in Mississippi and Ohio, Health Perspectives, vol.594, pp.46-51, 2004.

S. K. Sagiv, J. L. Bruno, J. M. Baker, V. Palzes, K. Kogut et al., Prenatal exposure to 596 organophosphate pesticides and functional neuroimaging in adolescents living in proximity 597 to pesticide application, PNAS, 2019.

M. K. Silver, J. Shao, B. Zhu, M. Chen, Y. Xia et al., Prenatal naled and chlorpyrifos 599 exposure is associated with deficits in infant motor function in a cohort of Chinese infants, Environment International, vol.600, pp.248-256, 2017.

T. A. Slotkin and F. J. Seidler, The alterations in CNS serotonergic mechanisms caused by neonatal 602 chlorpyrifos exposure are permanent, Developmental Brain Research, vol.158, pp.115-119, 2005.

C. J. Stoodley and J. D. Schmahmann, Functional topography in the human cerebellum: A meta-605 analysis of neuroimaging studies, NeuroImage, vol.44, pp.489-501, 2009.

D. L. Sudakin and D. L. Stone, Dialkyl phosphates as biomarkers of organophosphates: The current 608 divide between epidemiology and clinical toxicology, Clinical Toxicology, vol.49, pp.771-781, 2011.

S. J. Suskauer, D. J. Simmonds, S. Fotedar, J. G. Blankner, J. J. Pekar et al., Functional 611 magnetic resonance imaging evidence for abnormalities in response selection in attention 612 deficit hyperactivity disorder: differences in activation associated with response inhibition 613 but not habitual motor response, J Cogn Neurosci, vol.20, pp.478-493, 2008.

A. V. Terry, Functional consequences of repeated organophosphate exposure: Potential non-615 cholinergic mechanisms, Pharmacology & Therapeutics, vol.134, pp.355-365, 2012.

R. Whyatt and D. B. Barr, Measurement of organophosphate metabolites in postpartum 618 meconium as a potential biomarker of prenatal exposure: a validation study, Health Perspectives, vol.619, pp.417-420, 2001.

E. G. Willcutt, A. E. Doyle, J. T. Nigg, S. V. Faraone, and B. F. Pennington, Validity of the Executive Function 621 Theory of Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review, Biological, vol.622, pp.1336-1346, 2005.

K. Yolton, M. Cornelius, A. Ornoy, J. Mcgough, S. Makris et al., Exposure to neurotoxicants 624 and the development of attention deficit hyperactivity disorder and its related behaviors in 625 childhood, Neurotoxicology and Teratology, vol.44, pp.30-45, 2014.

A. Bari and T. W. Robbins, Inhibition and impulsivity: behavioral and neural basis of response control, Progress in Neurobiology, vol.628, pp.44-79, 2013.

M. Behrmann, J. J. Geng, and S. Shomstein, Parietal cortex and attention. Current Opinion in 630, Neurobiology, vol.14, pp.212-217, 2004.

R. Béranger, E. M. Hardy, C. Dexet, L. Guldner, C. Zaros et al., Multiple pesticide 632 analysis in hair samples of pregnant French women: Results from the ELFE national birth 633 cohort, Environment International, vol.120, pp.43-53, 2018.

C. Cartier, C. Warembourg, L. Maner-idrissi, G. Lacroix, A. Rouget et al., , p.635, 2016.

, Organophosphate Insecticide Metabolites in Prenatal and Childhood Urine Samples and 636 Intelligence Scores at 6 Years of Age: Results from the Mother-Child PELAGIE Cohort 637 (France), Environ Health Perspect, vol.124, pp.674-680

X. P. Chen, Y. S. Chao, W. Z. Chen, and J. Y. Dong, Mother gestational exposure to organophosphorus 639 pesticide induces neuron and glia loss in daughter adult brain, Part B, vol.52, pp.77-83, 2017.

O. Collignon, S. Girard, F. Gosselin, D. Saint-amour, F. Lepore et al., Women process 642 multisensory emotion expressions more efficiently than men, Neuropsychologia, vol.48, pp.220-225, 2010.

N. Comfort and D. B. Re, Sex-specific Neurotoxic Effects of Organophosphate Pesticides Across the 645 Life Course, Curr Environ Health Rep, vol.4, pp.392-404, 2017.

C. Coscollà, A. López, A. Yahyaoui, C. P. Robin, C. Poinsignon et al., Human exposure and risk 647 assessment to airborne pesticides in a rural French community. Science of The Total 648 Environment 584, vol.585, pp.856-868, 2017.

L. G. Costa, Organophosphorus Compounds at 80: Some Old and New Issues, Toxicol Sci, vol.162, p.35, 2018.

E. De-gavelle, B. De-lauzon-guillain, M. Charles, C. Chevrier, M. Hulin et al., Chronic 652 dietary exposure to pesticide residues and associated risk in the French ELFE cohort of 653 pregnant women, Environment International, vol.92, pp.533-542, 2016.

C. Dereumeaux, A. Saoudi, M. Pecheux, B. Berat, P. De-crouy-chanel et al., Biomarkers of 656 exposure to environmental contaminants in French pregnant women from the Elfe cohort in 657 2011, Environment International, vol.97, pp.56-67, 2016.

A. Diamond, W. S. Barnett, J. Thomas, and S. Munro, Preschool Program Improves Cognitive Control, Science, vol.659, pp.1387-1388, 2007.

B. Eskenazi, A. Bradman, and R. Castorina, Exposures of children to organophosphate pesticides and 661 their potential adverse health effects, Environmental Health Perspectives, vol.107, pp.409-419, 1999.

M. A. Furlong, A. Herring, J. P. Buckley, B. D. Goldman, J. L. Daniels et al., Prenatal exposure to 664 organophosphorus pesticides and childhood neurodevelopmental phenotypes, 2017.

, Environmental Research, vol.158, pp.737-747

R. Garlantézec, C. Monfort, F. Rouget, and S. Cordier, Maternal occupational exposure to solvents and 667 congenital malformations: a prospective study in the general population, Occupational and 668 Environmental Medicine, vol.66, pp.456-463, 2009.

J. A. Grahn, J. A. Parkinson, and A. M. Owen, The cognitive functions of the caudate nucleus, Neurobiology, vol.670, pp.141-155, 2008.

A. Gupta, R. Agarwal, and G. S. Shukla, Functional impairment of blood-brain barrier following 672 pesticide exposure during early development in rats, Hum Exp Toxicol, vol.18, pp.174-179, 1999.

H. Raul, J. Jordi, M. Katsuyuki, B. Dana, B. David et al., , p.675, 2010.

, Neurobehavioral Deficits and Increased Blood Pressure in School-Age Children Prenatally 676 Exposed to Pesticides, Environmental Health Perspectives, vol.118, pp.890-896

M. K. Horton, A. E. Margolis, C. Tang, and R. Wright, Neuroimaging is a novel tool to understand the 679 impact of environmental chemicals on neurodevelopment, Curr Opin Pediatr, vol.26, pp.230-236, 2014.

Y. Jin, M. J. Hein, J. A. Deddens, and C. J. Hines, Analysis of Lognormally Distributed Exposure Data with 682 Repeated Measures and Values below the Limit of Detection Using SAS, Ann Occup Hyg, vol.683, pp.97-112, 2011.

T. A. Jusko, M. A. Van-den-dries, A. Pronk, S. Pamela, A. et al., , p.685, 2019.

, Organophosphate Pesticide Metabolite Concentrations in Urine during Pregnancy and 686

, Offspring Nonverbal IQ at Age 6 Years, Environmental Health Perspectives, vol.127, 17007.

B. Luna and J. A. Sweeney, The Emergence of Collaborative Brain Function: fMRI Studies of the 689 Development of Response Inhibition, Annals of the New York Academy of Sciences, vol.690, issue.1021, pp.296-309, 2006.

A. R. Marks, H. Kim, B. Asa, K. Katherine, B. D. Boyd et al., , p.692, 2010.

, Organophosphate Pesticide Exposure and Attention in Young Mexican-American Children: 693 The CHAMACOS Study, Environmental Health Perspectives, vol.118, pp.1768-1774

M. Mortamais, C. Chevrier, C. Philippat, C. Petit, A. M. Calafat et al., Correcting for the 696 influence of sampling conditions on biomarkers of exposure to phenols and phthalates: a 2-697 step standardization method based on regression residuals, Environ Health, vol.11, p.29, 2012.

S. H. Mostofsky, J. G. Schafer, M. T. Abrams, M. C. Goldberg, A. A. Flower et al., fMRI evidence 700 that the neural basis of response inhibition is task-dependent, Cognitive brain research, vol.17, pp.701-419, 2003.

T. Nichols and S. Hayasaka, Controlling the familywise error rate in functional neuroimaging: a 703 comparative review, Statistical Methods in Medical Research, vol.12, pp.419-446, 2003.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast 706 dependent on blood oxygenation, Proc Natl Acad Sci, vol.87, pp.9868-9872, 1990.

G. Raffy, F. Mercier, O. Blanchard, M. Derbez, C. Dassonville et al., Semi-volatile 708 organic compounds in the air and dust of 30 French schools: a pilot study, Indoor Air, vol.27, pp.114-709, 2017.

V. A. Rauh, F. P. Perera, M. K. Horton, R. M. Whyatt, R. Bansal et al., Brain anomalies in children 711 exposed prenatally to a common organophosphate pesticide, Proceedings of the National 712 Academy of Sciences, vol.109, pp.7871-7876, 2012.

D. Rice and S. Barone, Critical periods of vulnerability for the developing nervous system: evidence 714 from humans and animal models, Environ Health Perspect, vol.108, pp.511-533, 2000.

M. L. Rosen, M. A. Sheridan, K. A. Sambrook, M. R. Peverill, A. N. Meltzoff et al., The Role of 717 Visual Association Cortex in Associative Memory Formation across Development, J Cogn 718 Neurosci, vol.30, pp.365-380, 2018.

P. Ruckart, K. Kirsten, B. Frank, J. , K. Wendy et al., Long-term neurobehavioral health 720 effects of methyl parathion exposure in children in Mississippi and Ohio. Environmental 721, Health Perspectives, vol.112, pp.46-51, 2004.

S. K. Sagiv, J. L. Bruno, J. M. Baker, V. Palzes, K. Kogut et al., Prenatal exposure to 723 organophosphate pesticides and functional neuroimaging in adolescents living in proximity 724 to pesticide application, PNAS, 2019.

M. K. Silver, J. Shao, B. Zhu, M. Chen, Y. Xia et al., Prenatal naled and chlorpyrifos 726 exposure is associated with deficits in infant motor function in a cohort of Chinese infants, Environment International, vol.727, pp.248-256, 2017.

T. A. Slotkin and F. J. Seidler, The alterations in CNS serotonergic mechanisms caused by neonatal 729 chlorpyrifos exposure are permanent, Developmental Brain Research, vol.158, pp.115-119, 2005.

C. J. Stoodley and J. D. Schmahmann, Functional topography in the human cerebellum: A meta-732 analysis of neuroimaging studies, NeuroImage, vol.44, pp.489-501, 2009.

D. L. Sudakin and D. L. Stone, Dialkyl phosphates as biomarkers of organophosphates: The current 735 divide between epidemiology and clinical toxicology, Clinical Toxicology, vol.49, pp.771-781, 2011.

S. J. Suskauer, D. J. Simmonds, S. Fotedar, J. G. Blankner, J. J. Pekar et al., Functional 738 magnetic resonance imaging evidence for abnormalities in response selection in attention 739 deficit hyperactivity disorder: differences in activation associated with response inhibition 740 but not habitual motor response, J Cogn Neurosci, vol.20, pp.478-493, 2008.

A. V. Terry, Functional consequences of repeated organophosphate exposure: Potential non-742 cholinergic mechanisms, Pharmacology & Therapeutics, vol.134, pp.355-365, 2012.

R. Whyatt and D. B. Barr, Measurement of organophosphate metabolites in postpartum 745 meconium as a potential biomarker of prenatal exposure: a validation study, Health Perspectives, vol.746, pp.417-420, 2001.

E. G. Willcutt, A. E. Doyle, J. T. Nigg, S. V. Faraone, and B. F. Pennington, Validity of the Executive Function 748 Theory of Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review, Biological, vol.749, pp.1336-1346, 2005.

K. Yolton, M. Cornelius, A. Ornoy, J. Mcgough, S. Makris et al., Exposure to neurotoxicants 751 and the development of attention deficit hyperactivity disorder and its related behaviors in 752 childhood, Neurotoxicology and Teratology, vol.44, pp.30-45, 2014.