L. Adleman, A subexponential algorithm for the discrete logarithm problem with applications to cryptography Twentieth annual symposium on foundations of computer science, IEEE, pp.55-60, 1979.

G. B. Agnew, R. C. Mullin, and S. A. Vanstone, A Fast Elliptic Curve Cryptosystem, Advances in Cryptology ? EUROCRYPT '89, pp.706-708, 1989.
DOI : 10.1007/3-540-46885-4_72

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer algorithms. Reading, 1974.

S. Alt and R. Lercier, How to Make a Traceable Block Cipher Stealthy, 2004.

A. O. Atkin, The number of points on an elliptic curve modulo a prime, 1988.

A. O. Atkin, The number of points on an elliptic curve modulo a prime, 1991.

A. O. Atkin and F. Morain, Elliptic curves and primality proving, Mathematics of Computation, vol.61, issue.203, pp.29-68, 1993.
DOI : 10.1090/S0025-5718-1993-1199989-X

URL : https://hal.archives-ouvertes.fr/inria-00075302

P. Barrett, Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor, Advances in Cryptology ? CRYPTO '86, pp.311-326, 1986.
DOI : 10.1007/3-540-47721-7_24

M. Bellare, J. Killian, and P. Rogaway, The Security of the Cipher Block Chaining Message Authentication Code, Advances in Cryptology ? CRYPTO'94, pp.341-358, 1994.
DOI : 10.1006/jcss.1999.1694

M. Bellare and T. Kohno, A Theoretical Treatment of Related-Key Attacks: RKA-PRPs, RKA-PRFs, and Applications, Advances in Cryptology ? Proceedings of EURO- CRYPT 2003, Lecture Notes in Computer Science, 2003.
DOI : 10.1007/3-540-39200-9_31

A. Bender and G. Castagnoli, On the Implementation of Elliptic Curve Cryptosystems, Advances in Cryptology ? CRYPTO '89, pp.186-193, 1989.
DOI : 10.1007/0-387-34805-0_18

D. J. Bernstein, Floating-Point Arithmetic and Message Authentication, 2000.

D. J. Bernstein, Circuits for integer factorization. A proposal, 2001.

D. J. Bernstein, Multidigit multiplication for mathematicians, Advances in Applied Mathematics, 2002.

J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, UMAC: Fast and Secure Message Authentication, Advances in Cryptology ? CRYPTO '99, 1999.
DOI : 10.1007/3-540-48405-1_14

D. Boneh, R. A. Demillo, and R. J. Lipton, On the Importance of Checking Cryptographic Protocols for Faults, Advances in Cryptology ? EUROCRYPT '97, pp.37-51, 1997.
DOI : 10.1007/3-540-69053-0_4

D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, Lecture Notes in Computer Science, vol.2139, pp.213-229, 2001.
DOI : 10.1007/3-540-44647-8_13

W. Bosma, J. Cannon, and C. Playoust, The Magma Algebra System I: The User Language, Journal of Symbolic Computation, vol.24, issue.3-4, pp.235-265, 1997.
DOI : 10.1006/jsco.1996.0125

]. Brown, Generic Groups, Collision Resistance, and ECDSA, Designs, Codes and Cryptography, vol.35, issue.3, 2002.
DOI : 10.1007/s10623-003-6154-z

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.1093

D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Mathematics of Computation, vol.48, issue.177, pp.95-101, 1987.
DOI : 10.1090/S0025-5718-1987-0866101-0

D. G. Cantor, On arithmetical algorithms over finite fields, Journal of Combinatorial Theory, Series A, vol.50, issue.2, pp.285-300, 1989.
DOI : 10.1016/0097-3165(89)90020-4

R. Carls, Generalized AGM sequences and approximation of canonical lifts, 2003.

J. L. Carter and M. N. Wegman, Universal classes of hash functions, Journal of Computer and System Sciences, vol.18, issue.2, pp.143-154, 1979.
DOI : 10.1016/0022-0000(79)90044-8

J. L. Carter and M. N. Wegman, New hash functions and their use in authentication and set equality, Journal of computer and system sciences, vol.22, issue.18, pp.265-279, 1981.

F. Chabaud and J. Couveignes, Bulletin de la cellule de prospective en Codage, Cryptographie et Sécurité des Réseaux, volume II, chapter Courbes elliptiques et cryptographie, 1997.

F. Chabaud and J. Couveignes, Bulletin de la cellule de prospective en Codage, Cryptographie et Sécurité des Réseaux, volume III, chapter Le logiciel de calcul formel MAGMA, 1998.

F. Chabaud, R. Lercier, U. Zen, and . Manual, Available at http ://sourceforge

J. Chao, K. Tanada, and S. Tsujii, Design of Elliptic Curves with Controllable Lower Boundary of Extension Degree for Reduction Attacks, Advances in Cryptology ? CRYPTO '94, pp.50-55, 1994.
DOI : 10.1007/3-540-48658-5_6

P. Chose, A. Joux, and M. Mitton, Fast Correlation Attacks: An Algorithmic Point of View, Advances in Cryptology ? EUROCRYPT 2002, pp.209-221, 2002.
DOI : 10.1007/3-540-46035-7_14

D. Chudnovsky and G. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, Journal of Complexity, vol.4, issue.4, pp.285-316, 1988.
DOI : 10.1016/0885-064X(88)90012-X

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC304516/pdf

H. Cohen, G. Frey, R. Lercier, D. Lubicz, and F. Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, chapter Point Counting on Elliptic and Hyperelliptic Curves, 2005.

S. A. Cook, On the minimum computation time of functions, Transactions of the American Mathematical Society, vol.142, 1966.
DOI : 10.1090/S0002-9947-1969-0249212-8

D. Coppersmith, Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities, Journal of Cryptology, vol.10, issue.4, pp.233-260, 1997.
DOI : 10.1007/s001459900030

D. Coppersmith, A. Odlyzko, and R. Schroppel, Discrete logarithms in GF (p). Algorithmica, pp.1-15, 1986.

J. Coron, Resistance Against Differential Power Analysis For Elliptic Curve Cryptosystems, CHES'99, pp.292-302, 1999.
DOI : 10.1007/3-540-48059-5_25

J. Couveignes, Quelques calculs en théorie des nombres. thèse, 1994.

J. Couveignes, Computing l-isogenies using the p-torsion, ANTS-II Couveignes. Isomorphisms between Artin-Schreier towers. Mathematics of Computation, pp.59-65, 1996.
DOI : 10.1007/3-540-61581-4_41

R. Cramer and V. Shoup, Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack, SIAM Journal on Computing, vol.33, issue.1, 2002.
DOI : 10.1137/S0097539702403773

N. Demytko, A New Elliptic Curve Based Analogue of RSA, Advances in Cryptology ? EUROCRYPT '93, pp.40-49, 1993.
DOI : 10.1007/3-540-48285-7_4

J. Denef and F. Vercauteren, An Extension of Kedlaya???s Algorithm to Artin-Schreier Curves in Characteristic 2, Algorithmic Number Theory, 5th International Symposium, ANTS-V, pp.369-384, 2002.
DOI : 10.1007/3-540-45455-1_25

W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol.22, issue.6, pp.644-654, 1976.
DOI : 10.1109/TIT.1976.1055638

D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry. Number 150 in Graduate Texts in Mathematics, 1995.

N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational Perspectives On Number Theory, 1995.

J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, vol.352, 1973.
DOI : 10.1007/BFb0060090

M. Fouquet, P. Gaudry, and R. Harley, An extension of Satoh's algorithm and its implementation, Journal of Ramanujan Mathematical Society, vol.15, pp.281-318, 2000.

G. Frey, How to disguise an elliptic curve. Talk at ECC'98, 1998.

S. D. Galbraith, F. Hess, and N. P. Smart, Extending the GHS Weil Descent Attack, Advances in Cryptology ? EUROCRYPT 2002, pp.29-44, 2002.
DOI : 10.1007/3-540-46035-7_3

S. D. Galbraith and N. P. Smart, A Cryptographic Application of Weil Descent, Codes and Cryptography, pp.191-200, 1999.
DOI : 10.1007/3-540-46665-7_23

P. Gaudry, Algorithmique des courbes hyperelliptiques et applications à la cryptologie, 2000.
URL : https://hal.archives-ouvertes.fr/tel-00514848

P. Gaudry, Cardinality of a genus 2 hyperelliptic curve over GF(5 · 10 24 + 41). Email sur la mailing liste NMBRTHRY, 2002.

P. Gaudry, A Comparison and a Combination of SST and AGM Algorithms for Counting Points of Elliptic Curves in Characteristic 2, Advances in Cryptology ? ASIACRYPT 2002, 2002.
DOI : 10.1007/3-540-36178-2_20

URL : https://hal.archives-ouvertes.fr/inria-00514137

P. Gaudry and N. Gurel, An Extension of Kedlaya???s Point-Counting Algorithm to Superelliptic Curves, Advances in Cryptology ? ASIACRYPT 2001, 2001.
DOI : 10.1007/3-540-45682-1_28

P. Gaudry, F. Hesse, and N. P. Smart, Constructive and destructive facets of Weil descent on elliptic curves, Journal of Cryptology, vol.44, issue.1, pp.19-46, 2002.
DOI : 10.1007/s00145-001-0011-x

URL : https://hal.archives-ouvertes.fr/inria-00512763

G. Free-software-foundation and . Gmp, Available at http ://www.swox.com/gmp, 2002.

D. Gordon, Discrete Logarithms in $GF ( P )$ Using the Number Field Sieve, SIAM Journal on Discrete Mathematics, vol.6, issue.1, pp.124-138, 1993.
DOI : 10.1137/0406010

L. Goubin, A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems, PKC'2003, pp.199-211, 2003.
DOI : 10.1007/3-540-36288-6_15

H. Gunji, The hasse invariant andp-division points of an elliptic curve, Archiv der Mathematik, vol.145, issue.1, 1976.
DOI : 10.1007/BF01224654

R. Harley, Algorithmes avancés pour l'arithmétique des courbes, 2002.

R. Harley, Asymptotically optimal p-adic point-counting. Email sur la mailing liste NMBRTHRY, 2002.

R. Harley, Elliptic curve point counting : 32003 bits. Email sur la mailing liste NMBRTHRY, 2002.

G. Harper, A. Menezes, and S. A. Vanstone, Public-Key Cryptosystems with Very Small Key Lengths, Advances in Cryptology ? EUROCRYPT '92, pp.163-173, 1992.
DOI : 10.1007/3-540-47555-9_14

R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, 1977.

J. Hastad, N Using RSA with Low Exponent in a Public Key Network, Advances in Cryptology ? CRYPTO '85, pp.403-408, 1986.
DOI : 10.1007/3-540-39799-X_29

E. Jaulmes, Analyse de sécurité de schémas cryptographiques, 2003.

E. Jaulmes, A. Joux, and F. Valette, On the Security of Randomized CBC-MAC Beyond the Birthday Paradox Limit A New Construction, Fast Software Encryption, pp.237-251, 2002.
DOI : 10.1007/3-540-45661-9_19

E. Jaulmes and R. Lercier, FRMAC, a Fast Randomized Message Authentication Code. Submitted for publication at FSE', 2004.

A. Joux, A One Round Protocol for Tripartite Diffie???Hellman, Fourth Algorithmic Number Theory Symposium, pp.385-394, 2000.
DOI : 10.1007/10722028_23

A. Joux and E. Jaulmes, Cryptanalysis of PKP : A new Approach, Lecture Notes in Computer Science, pp.165-172, 1992.

A. Joux and R. Lercier, Discrete logarithms in GF(p). Email sur la mailing liste NMBRTHRY, 1998.

A. Joux and R. Lercier, State-of-the-art in implementing algorithms for the (ordinary) discrete logarithm problem. Talk at the Elliptic Curve and Cryptography conference, 1999.

A. Joux and R. Lercier, Calcul de logarithmes discret dans GF (2 521 ). Email sur la mailing liste NMBRTHRY, 2001.

A. Joux and R. Lercier, ``Chinese & Match'', an alternative to Atkin's ``Match and Sort'' method used in the SEA algorithm, Mathematics of Computation, vol.70, issue.234, pp.827-836, 2001.
DOI : 10.1090/S0025-5718-00-01200-X

A. Joux and R. Lercier, Discrete logarithms in GF(p) Email sur la mailing liste NMBRTHRY, 2001.

A. Joux and R. Lercier, Discrete logarithms in GF(p) Email sur la mailing liste NMBRTHRY, 2001.

A. Joux and R. Lercier, The Function Field Sieve Is Quite Special, Algorithmic number theory V, pp.431-445, 2002.
DOI : 10.1007/3-540-45455-1_34

URL : https://hal.archives-ouvertes.fr/hal-01102040

A. Joux and R. Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method, Mathematics of Computation, vol.72, issue.242, pp.953-967, 2003.
DOI : 10.1090/S0025-5718-02-01482-5

URL : https://hal.archives-ouvertes.fr/hal-01102016

M. Joye, Security Analysis of RSA-type Cryptosystems, 1997.

B. S. Kaliski, A Pseudo-Random Bit Generator Based on Elliptic Logarithms, Advances in Cryptology ? CRYPTO '86, pp.84-103, 1986.
DOI : 10.1007/3-540-47721-7_7

B. S. Kaliski, One-way permutations on elliptic curves Multiplication of multidigit numbers on automata, Journal of Cryptology Doklady Akademii Nauk SSSR, vol.3, issue.1452, pp.187-199293, 1962.

K. S. Kedlaya, Counting points on hyperelliptic curves using Monsky Washnitzer cohomology, Journal of the Ramanujan Mathematical Society, vol.16, pp.323-328, 2001.

H. Y. Kim, J. Y. Park, J. H. Cheon, J. H. Park, J. H. Kim et al., Fast Elliptic Curve Point Counting Using Gaussian Normal Basis, Algorithmic Number Theory, 5th International Symposium, ANTS-V, volume 2369 of Lecture Notes in Computer Science, pp.292-307, 2002.
DOI : 10.1007/3-540-45455-1_24

D. E. Knuth, The Art of Computer Programming : Seminumerical Algorithms, 1981.

N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, vol.48, issue.177, pp.203-209, 1987.
DOI : 10.1090/S0025-5718-1987-0866109-5

N. Koblitz, Hyperelliptic cryptosystems, Journal of Cryptology, vol.2, issue.4, pp.139-150, 1989.
DOI : 10.1007/BF02252872

N. Koblitz, Constructing Elliptic Curve Cryptosystems in Characteristic 2, Advances in Cryptology ? CRYPTO '90, pp.156-168, 1990.
DOI : 10.1007/3-540-38424-3_11

N. Koblitz, CM-Curves with Good Cryptographic Properties, Advances in Cryptology ? CRYPTO '91, pp.279-287, 1991.
DOI : 10.1007/3-540-46766-1_22

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.6778

P. C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems, Advances in Cryptology ? CRYPTO '96, pp.104-113, 1996.
DOI : 10.1007/3-540-68697-5_9

K. Koyama, Fast RSA-type Schemes Based on Singular Cubic Curves y 2 + axy ??? x 3 (mod n), Advances in Cryptology ? EUROCRYPT '95, pp.329-340, 1995.
DOI : 10.1007/3-540-49264-X_27

K. Koyama, U. M. Maurer, T. Okamoto, and S. A. Vanstone, New Public-Key Schemes Based on Elliptic Curves over the Ring Zn, Advances in Cryptology ? CRYPTO '91, pp.252-266, 1991.
DOI : 10.1007/3-540-46766-1_20

K. Kurosawa, K. Okada, and S. Tsujii, Low exponent attack against elliptic curve RSA, Advances in Cryptology ? ASIACRYPT '94, pp.376-383, 1994.

B. A. Lamacchia and A. M. Odlyzko, Solving Large Sparse Linear Systems Over Finite Fields, Advances in Cryptology ? CRYPTO '90, pp.109-133, 1990.
DOI : 10.1007/3-540-38424-3_8

S. Lang, Algebra. 3rd revised ed. Graduate Texts in Mathematics, 2002.

A. G. Lauder, Counting Solutions to Equations in Many Variables over Finite Fields, Foundations of Computational Mathematics, vol.4, issue.3, 2003.
DOI : 10.1007/s10208-003-0093-y

A. G. Lauder and D. Wan, Abstract, LMS Journal of Computation and Mathematics, vol.1122, pp.34-55, 2002.
DOI : 10.2307/2374675

A. G. Lauder and D. Wan, Computing zeta functions of Artin-Schreier curves over finite fields II, Journal of Complexity, vol.20, issue.2-3, 2002.
DOI : 10.1016/j.jco.2003.08.009

A. G. Lauder and D. Wan, Counting rational points on varieties over finite fields of small characteristic . MSRI, Algorithmic Number Theory, 2002.

A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, vol.32, issue.4, pp.513-534, 1982.
DOI : 10.1007/BF01457454

R. Lercier, Factoriser des entiers par la méthode des courbes elliptiques, 1993.

R. Lercier, Computing isogenies in $$\mathbb{F}_{2^n } $$, Algorithmic number theory, pp.197-212, 1996.
DOI : 10.1007/3-540-61581-4_55

R. Lercier, Algorithmique des courbes elliptiques dans les corps finis, Thèse, École polytechnique, 1997.
URL : https://hal.archives-ouvertes.fr/tel-01101949

R. Lercier, Finding Good Random Elliptic Curves for Cryptosystems Defined over $$ \mathbb{F}_{{\text{2}}^n } $$, Advances in Cryptology ? EUROCRYPT '97, pp.379-392, 1997.
DOI : 10.1007/3-540-69053-0_26

R. Lercier, Courbes elliptiques et cryptographie In Direction des Centres d'Expertise et d'Essais, number 64 in Revue Scientifique et Technique de la Defense, pp.59-66, 2004.

R. Lercier and D. Lubicz, Cardinality of a genus 2 hyperelliptic curve over GF (2 32770 ). Email sur la mailing liste NMBRTHRY, 2003.

R. Lercier and D. Lubicz, Counting Points on Elliptic Curves over Finite Fields of Small Characteristic in Quasi Quadratic Time, Advances in Cryptology ? EUROCRYPT 2003, pp.360-373, 2003.
DOI : 10.1007/3-540-39200-9_22

URL : https://hal.archives-ouvertes.fr/hal-01102038

R. Lercier and D. Lubicz, A quasi quadratic time algorithm for hyperelliptic curve point counting, The Ramanujan Journal, vol.2, issue.1, 2004.
DOI : 10.1007/s11139-006-0151-6

URL : https://hal.archives-ouvertes.fr/hal-00456401

R. Lercier and F. Morain, Counting points on elliptic curves over F p n using Couveignes's algorithm, 1995.

R. Lercier and F. Morain, Counting the number of points on elliptic curves over finite fields: strategies and performances, Advances in Cryptology ? EUROCRYPT '95, pp.79-94, 1995.
DOI : 10.1007/3-540-49264-X_7

URL : https://hal.archives-ouvertes.fr/hal-01102046

R. Lercier and F. Morain, #E(GF (10 499 + 153)). Email sur la mailing liste NMBRTHRY, 1995.

R. Lercier and F. Morain, Algorithms for computing isogenies between elliptic curves, Computational perspectives on number theory, pp.77-96, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01102041

R. Lercier and F. Morain, Computing isogenies between elliptic curves over $F_{p^n}$ using Couveignes's algorithm, Mathematics of Computation, vol.69, issue.229, pp.351-370, 2000.
DOI : 10.1090/S0025-5718-99-01081-9

R. Lidl and H. Niederreiter, Finite Fields, of Encyclopedia of Mathematics and its Applications, 1983.
DOI : 10.1017/CBO9780511525926

J. Lubin, J. Serre, and J. Tate, Elliptic curves and formal groups, 1964.

H. Matsumura, Commutative Ring Theory, volume 8 of Cambridge studies in advanced mathematics, 1986.

K. Mccurley, The discrete logarithm problem, Proc. Symp. in Applied Mathematics, number 42 in Cryptology and Computational Number Theory, pp.49-74, 1990.
DOI : 10.1090/psapm/042/1095551

W. Meier and O. Staffelbach, Efficient Multiplication on Certain Nonsupersingular Elliptic Curves, Advances in Cryptology ? CRYPTO '92, pp.333-344, 1992.
DOI : 10.1007/3-540-48071-4_24

A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone et al., Applications of finite fields. The Kluwer International Series in Engineering and Computer Science, 1993.

A. J. Menezes, T. Okamoto, and S. A. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory, vol.39, issue.5, pp.1639-1646, 1993.
DOI : 10.1109/18.259647

A. J. Menezes and S. A. Vanstone, Elliptic curve cryptosystems and their implementation, Journal of Cryptology, vol.6, pp.209-224, 1993.
DOI : 10.1007/bf00203817

A. J. Menezes, S. A. Vanstone, and R. J. Zuccherato, Counting Points on Elliptic Curves Over F 2 m, Mestre. AGM pour le genre 1 et 2 Lettre à Gaudry et Harley, pp.407-420, 1993.
DOI : 10.2307/2153177

J. Mestre, Notes of a talk given at the seminar of cryptography at Rennes, 2002.

B. Meyer and V. Mueller, A Public Key Cryptosystem Based on Elliptic Curves over ???/n??? Equivalent to Factoring, Advances in Cryptology ? EUROCRYPT '96, pp.49-59, 1996.
DOI : 10.1007/3-540-68339-9_5

V. S. Miller, Use of Elliptic Curves in Cryptography, Lecture Notes in Computer Science, vol.218, pp.417-428, 1986.
DOI : 10.1007/3-540-39799-X_31

A. Miyaji, Elliptic curves over F p suitable for cryptosystems, Advances in Cryptology ? AUS- CRYPT '92, pp.479-491, 1992.
DOI : 10.1007/3-540-57220-1_86

A. Miyaji, On ordinary elliptic curve cryptosystems, Advances in Cryptology ? AUSCRYPT '92, pp.460-469, 1992.
DOI : 10.1007/3-540-57332-1_39

C. Monico, The ECCp-109 challenge

P. L. Montgomery, Modular multiplication without trial division, Mathematics of Computation, vol.44, issue.170, pp.519-521, 1985.
DOI : 10.1090/S0025-5718-1985-0777282-X

F. Morain, Building Cyclic Elliptic Curves Modulo Large Primes, Advances in Cryptology ? EUROCRYPT '91, pp.328-336, 1991.
DOI : 10.1007/3-540-46416-6_28

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.9036

P. Morandi, Field and Galois Theory, Graduate texts in Mathematics, vol.167, 1996.
DOI : 10.1007/978-1-4612-4040-2

D. Mumford, Tata lectures on theta I, volume 28 of Progress in Mathematics, With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman, 1983.

D. Mumford, Tata lectures on theta II Jacobian theta functions and differential equations, Progress in Mathematics Birkhäuser Boston Inc, vol.43, 1984.

J. Neukirch, Algebraic Number Theory, volume 322 of Grundlehren der mathematischen Wissenschaften, 1999.

J. Neukirch, Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences Translated from the 1992 German original and with a note by Norbert Schappacher, 1999.

W. Nevelsteen and B. Preneel, Software Performance of Universal Hash Functions, Advances in Cryptology ? EUROCRYPT '99, pp.24-41, 1999.
DOI : 10.1007/3-540-48910-X_3

J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields, Mathematics of Computation, vol.55, issue.192, pp.745-763, 1990.
DOI : 10.1090/S0025-5718-1990-1035941-X

B. Preneel, A. Biryukov, E. Oswald, B. Van-rompay, L. Granboulan et al., Nessie security report, 2002.

C. Ritzenthaler, Algorithme AGM pour les courbes de genre 3 non hyperelliptiques, 2003.

C. Ritzenthaler, Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis, 2003.

T. Satoh, The canonical lift of an ordinary elliptic curve over a finite field and its point counting, J. Ramanujan Math. Soc, vol.15, issue.4, pp.247-270, 2000.

T. Satoh, On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields, Algorithmic Number Theory, 5th International Symposium, ANTS-V, pp.43-66, 2002.
DOI : 10.1007/3-540-45455-1_5

T. Satoh, B. Skjernaa, and Y. Taguchi, Fast computation of canonical lifts of elliptic curves and its application to point counting. Finite Fields and Their Applications, pp.89-101, 2003.

O. Schirokauer, The function field is quite special

O. Schirokauer, Discrete Logarithms and Local Units, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.345, issue.1676, pp.409-423, 1993.
DOI : 10.1098/rsta.1993.0139

A. Schönhage, Fast multiplication of polynomials over fields of characteristic 2, Acta Informatica, vol.7, issue.4, pp.395-398, 1977.
DOI : 10.1007/BF00289470

A. Schönhage and V. Strassen, Fast multiplication of large numbers, Computing, vol.150, issue.3-4, pp.281-292, 1971.
DOI : 10.1007/BF02242355

R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Mathematics of Computation, vol.44, pp.483-494, 1985.

R. Schoof, Counting points on elliptic curves over finite fields, Journal de Th??orie des Nombres de Bordeaux, vol.7, issue.1, pp.219-254, 1995.
DOI : 10.5802/jtnb.142

R. Schoof, Counting points on elliptic curves over finite fields, Journal de Th??orie des Nombres de Bordeaux, vol.7, issue.1, pp.483-494, 1998.
DOI : 10.5802/jtnb.142

R. Schroeppel, H. Orman, S. O. Malley, and O. Spatscheck, Fast Key Exchange with Elliptic Curve Systems, Advances in Cryptology ? CRYPTO '95, pp.43-56, 1995.
DOI : 10.1007/3-540-44750-4_4

J. Serre, G??om??trie alg??brique et g??om??trie analytique, Annales de l???institut Fourier, vol.6, pp.1-42
DOI : 10.5802/aif.59

D. Shanks, Class number, a theory of factorization, and genera, Proc. Symp. Pure Math, pp.415-440, 1971.
DOI : 10.1090/pspum/020/0316385

V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems, Advances in Cryptology ? EUROCRYPT '97, pp.256-266, 1997.
DOI : 10.1007/3-540-69053-0_18

J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol.106, 1986.

B. Skjernaa, Satoh's algorithm in characteristic 2, Mathematics of Computation, vol.72, issue.241, 2000.
DOI : 10.1090/S0025-5718-02-01434-5

N. P. Smart, An Analysis of Goubin???s Refined Power Analysis Attack, CHES'2003, pp.281-290, 2003.
DOI : 10.1007/978-3-540-45238-6_23

C. Smith and . Boyd, An elliptic curve analogue of McCurley's key agreement scheme, Cryptography and Coding, pp.150-157, 1995.
DOI : 10.1007/3-540-60693-9_17

J. Stern, Fondements mathématiques de l'informatique. Ediscience internationale, 1990.

A. L. Toom, The complexity of a scheme of functional elements realizing the multiplication of integers, Doklady Akademii Nauk SSSR, vol.4, issue.3, pp.714-716, 1963.

S. A. Vanstone, Responses to NIST's proposal, Communications of the ACM, vol.35, pp.50-52, 1992.

F. Vercauteren, Computing Zeta Functions of Hyperelliptic Curves over Finite Fields of Characteristic 2, Advances in Cryptology ? CRYPTO 2002, pp.369-384, 2002.
DOI : 10.1007/3-540-45708-9_24

F. Vercauteren, Computing Zéta functions of curves over finite fields, 2003.

]. F. Vercauteren, B. Preneel, and J. Vandewalle, A Memory Efficient Version of Satoh???s Algorithm, Advances in Cryptology ? EUROCRYPT 2001 (Innsbruck), pp.1-13, 2001.
DOI : 10.1007/3-540-44987-6_1

J. F. Voloch, Explicit p-descent for elliptic curves in characteristic p. CM, pp.247-258, 1990.

D. Weber, An Implementation of the General Number Field Sieve to Compute Discrete Logarithms mod p, Advances in Cryptology ? EUROCRYPT '95, pp.95-105, 1995.
DOI : 10.1007/3-540-49264-X_8

D. Weber, Computing discrete logarithms with quadratic number rings, Advances in Cryptology ? EUROCRYPT '98, pp.171-183, 1998.
DOI : 10.1007/BFb0054125

H. C. Williams, A modification of the RSA Public Key cryptosystem, IEEE Trans. Inform. Theory, vol.6, pp.726-729, 1980.

?. R. Lercier and D. Lubicz, A quasi quadratic time algorithm for hyperelliptic curve point counting, The Ramanujan Journal, vol.2, issue.1, 2004.
DOI : 10.1007/s11139-006-0151-6

URL : https://hal.archives-ouvertes.fr/hal-00456401

?. A. Joux and R. Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method, Mathematics of Computation, vol.72, issue.242, pp.953-967, 2003.
DOI : 10.1090/S0025-5718-02-01482-5

URL : https://hal.archives-ouvertes.fr/hal-01102016

?. A. Joux and R. Lercier, ``Chinese & Match'', an alternative to Atkin's ``Match and Sort'' method used in the SEA algorithm, Mathematics of Computation, vol.70, issue.234, pp.827-836, 2001.
DOI : 10.1090/S0025-5718-00-01200-X

?. R. Lercier and F. Morain, Computing isogenies between elliptic curves over $F_{p^n}$ using Couveignes's algorithm, Mathematics of Computation, vol.69, issue.229, pp.351-370, 2000.
DOI : 10.1090/S0025-5718-99-01081-9

?. R. Lercier, F. Morain-de, and A. Ip-stud, Algorithms for computing isogenies between elliptic curves, Computational perspectives on number theory, pp.77-96, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01102041

?. R. Congrès-internationaux-avec-comité-de-lecture, D. Lercier, and . Lubicz, Counting Points on Elliptic Curves over Finite Fields of Small Characteristic in Quasi Quadratic Time Advances in Cryptology?EUROCRYPT, et J. van Leeuwen, éditeurs Lecture Notes in Computer Science, vol.2656, pp.360-373, 2003.

?. A. Joux and R. Lercier, The Function Field Sieve Is Quite Special, Algorithmic number theory V, volume 2369 de Lecture Notes in Computer Science, pp.431-445, 2002.
DOI : 10.1007/3-540-45455-1_34

URL : https://hal.archives-ouvertes.fr/hal-01102040

?. F. Chabaud and J. Couveignes, Bulletin de la cellule de prospective en Codage, Cryptographie et Sécurité des Réseaux, volume III, chapitre " Le logiciel de calcul formel MAGMA, 1998.

?. F. Chabaud and J. Couveignes, Bulletin de la cellule de prospective en Codage, Cryptographie et Sécurité des Réseaux, volume II, chapitre " Courbes elliptiques et cryptographie, 1997.