. Accelrys, TOPKAT (TOxicity Prediction by Komputer Assisted Technology), 2015.

E. Samuel and . Adams, Molecular Similarity and Xenobiotic Metabolism, 2010.

L. Afzelius, C. Hasselgren-arnby, A. Broo, L. Carlsson, C. Isaksson et al., State-of-the-art Tools for Computational Site of Metabolism Predictions: Comparative Analysis, Mechanistical Insights, and Future Applications, Drug Metabolism Reviews, vol.259, issue.1, pp.61-86, 2007.
DOI : 10.1021/jm021104i

F. Allen, R. Greiner, and D. Wishart, Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification, Metabolomics, vol.11, issue.15, pp.98-110, 2015.
DOI : 10.1186/1471-2105-11-148

F. Allen, A. Pon, R. Greiner, and D. Wishart, Computational Prediction of Electron Ionization Mass Spectra to Assist in GC/MS Compound Identification, Analytical Chemistry, vol.88, issue.15, pp.7689-7697, 2016.
DOI : 10.1021/acs.analchem.6b01622

F. Allen, A. Pon, M. Wilson, R. Greiner, and D. Wishart, CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra, Nucleic Acids Research, vol.22, issue.W1, pp.94-99, 2014.
DOI : 10.1002/rcm.3701

A. Alonen, O. Aitio, K. Hakala, L. Luukkanen, M. Finel et al., BIOSYNTHESIS OF DOBUTAMINE MONOGLUCURONIDES AND GLUCURONIDATION OF DOBUTAMINE BY RECOMBINANT HUMAN UDP-GLUCURONOSYLTRANSFERASES, Drug Metabolism and Disposition, vol.33, issue.5, pp.657-663, 2005.
DOI : 10.1124/dmd.104.002139

V. Alves, E. Muratov, S. Capuzzi, R. Politi, Y. Low et al., Victor Kuz'min, Denis Fourches, and Alexander Tropsha . Alarms about structural alerts. Green chemistry : an international journal and green chemistry resource, pp.184348-4360, 2016.

E. Anderson, D. Gilman, D. Veith, and M. Weininger, Environmental Research Laboratory (Duluth. SMILES, a line notation and computerized interpreter for chemical structures, p.20862752, 1987.

K. Augustsson, K. Skog, M. Jägerstad, P. W. Dickman, and G. Steineck, Dietary heterocyclic amines and cancer of the colon, rectum, bladder, and kidney: a population-based study, The Lancet, vol.353, issue.9154, pp.353703-707, 1999.
DOI : 10.1016/S0140-6736(98)06099-1

B. M. Bakker, K. Van-eunen, A. L. Jeroen, . Jeneson, A. W. Natal et al., Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models, Biochemical Society Transactions, vol.38, issue.5, pp.1294-1301, 2010.
DOI : 10.1042/BST0381294

J. H. Barrett, G. Smith, N. Waxman, T. Gooderham, R. C. Lightfoot et al., Investigation of interaction between N-acetyltransferase 2 and heterocyclic amines as potential risk factors for colorectal cancer, Carcinogenesis, vol.24, issue.2, pp.275-282, 2003.
DOI : 10.1093/carcin/24.2.275

T. M. Baughman, C. L. Talarico, and J. R. Soglia, Evaluation of the metabolism of propranolol by linear ion trap technology in mouse, rat, dog, monkey, and human cryopreserved hepatocytes, Rapid Communications in Mass Spectrometry, vol.20, issue.14, pp.2146-2150, 2009.
DOI : 10.1111/j.1365-2125.1984.tb02537.x

F. A. Beland, Chemical Carcinogenesis and Mutagenesis I | Springer, 1990.

M. Bellamri, L. L. Hegarat, R. J. Turesky, and S. Langouët, ]indole (A??C) in Primary Human Hepatocytes, Chemical Research in Toxicology, vol.30, issue.2, pp.657-668, 2017.
DOI : 10.1021/acs.chemrestox.6b00394

C. Belloc, S. Baird, J. Cosme, S. Lecoeur, J. C. Gautier et al., Human cytochromes P450 expressed in Escherichia coli: production of specific antibodies, Toxicology, vol.106, issue.1-3, pp.1-3207, 1996.
DOI : 10.1016/0300-483X(95)03178-I

. Pr-dominique-belpomme, Ces maladies créées par l'homme : Comment la dégradation de l'environnement met en péril notre santé, 2004.

R. L. Blanchard, R. R. Freimuth, J. Buck, R. M. Weinshilboum, and M. W. Coughtrie, A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily, Pharmacogenetics, vol.14, issue.3, pp.199-211, 2004.
DOI : 10.1097/00008571-200403000-00009

M. Blum, A. Demierre, D. M. Grant, M. Heim, and U. A. Meyer, Molecular mechanism of slow acetylation of drugs and carcinogens in humans., Proceedings of the National Academy of Sciences, vol.88, issue.12, pp.5237-5241, 1991.
DOI : 10.1073/pnas.88.12.5237

A. R. Boobis, A. M. Lynch, S. Murray, R. De-la-torre, A. Solans et al., CYP1a2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans, Cancer Research, vol.54, issue.1, pp.89-94, 1994.

A. Bordbar and B. O. Palsson, Using the reconstructed genome-scale human metabolic network to study physiology and pathology, Journal of Internal Medicine, vol.9, issue.Suppl 5, pp.131-141, 2012.
DOI : 10.1038/nrmicro2456

A. Bordbar, A. M. Feist, R. Usaite-black, J. Woodcock, B. O. Palsson et al., A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology, BMC Systems Biology, vol.5, issue.1, p.180, 2011.
DOI : 10.1210/jc.2009-0212

M. Bostock, V. Ogievetsky, and J. Heer, D?? Data-Driven Documents, Proc. InfoVis), 2011.
DOI : 10.1109/TVCG.2011.185

K. S. Brown and J. P. Sethna, Statistical mechanical approaches to models with many poorly known parameters, Physical Review E, vol.22, issue.2, 2003.
DOI : 10.1016/0021-9991(76)90078-4

A. Bugrim, T. Nikolskaya, and Y. Nikolsky, Early prediction of drug metabolism and toxicity: systems biology approach and modeling, Drug Discovery Today, vol.9, issue.3, pp.127-135, 2004.
DOI : 10.1016/S1359-6446(03)02971-4

L. M. Butler, R. Sinha, R. C. Millikan, C. F. Martin, B. Newman et al., Heterocyclic Amines, Meat Intake, and Association with Colon Cancer in a Population-based Study, American Journal of Epidemiology, vol.157, issue.5, pp.434-445, 2003.
DOI : 10.1093/aje/kwf221

M. A. Butler, N. P. Lang, J. F. Young, N. E. Caporaso, P. Vineis et al., Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites, Pharmacogenetics, vol.2, issue.3, pp.116-127, 1992.
DOI : 10.1097/00008571-199206000-00003

M. A. Butler, F. Peter-guengerich, and F. F. Kadlubar, Metabolic Oxidation of the Carcinogens 4-Aminobiphenyl and 4,4'-Methylenebis(2- chloroaniline) by Human Hepatic Microsomes and by Purified Rat Hepatic Cytochrome P-450 Monooxygenases, Cancer Research, vol.49, issue.1, pp.25-31, 1989.

W. G. Button, P. N. Judson, A. Long, and J. D. Vessey, Using Absolute and Relative Reasoning in the Prediction of the Potential Metabolism of Xenobiotics, Journal of Chemical Information and Computer Sciences, vol.43, issue.5, pp.1371-1377, 2003.
DOI : 10.1021/ci0202739

T. Cai, L. Yao, and R. J. Turesky, Bioactivation of Heterocyclic Aromatic Amines by UDP Glucuronosyltransferases, Chemical Research in Toxicology, vol.29, issue.5, pp.879-891, 2016.
DOI : 10.1021/acs.chemrestox.6b00046

V. Campagna-slater, J. Pottel, E. Therrien, L. Cantin, and N. Moitessier, Development of a Computational Tool to Rival Experts in the Prediction of Sites of Metabolism of Xenobiotics by P450s, Journal of Chemical Information and Modeling, vol.52, issue.9, pp.2471-2483, 2012.
DOI : 10.1021/ci3003073

A. J. Campbell, M. L. Lamb, and D. , Ensemble-Based Docking Using Biased Molecular Dynamics, Journal of Chemical Information and Modeling, vol.54, issue.7, pp.2127-2138, 2014.
DOI : 10.1021/ci400729j

J. L. Campbell, M. E. Andersen, P. M. Hinderliter, T. P. Kun-don-yi, C. B. Pastoor et al., PBPK Model for Atrazine and Its Chlorotriazine Metabolites in Rat and Human, Toxicological Sciences, vol.54, issue.2, pp.441-453, 2016.
DOI : 10.1080/15287394.2012.652059

J. L. Campbell, M. Yoon, and H. J. Clewell, A case study on quantitative in vitro to in vivo extrapolation for environmental esters: Methyl-, propyl- and butylparaben, Toxicology, vol.332, pp.67-76, 2015.
DOI : 10.1016/j.tox.2015.03.010

J. Castañeda-acosta, P. L. Bounds, G. W. Winston-shu-ying-chang, W. Li, S. C. Traeger et al., Microsomal deacetylation of ring-hydroxylated 2-(acetylamino)fluorene isomers : effect of ring position and molecular mechanics considerations Confirmation that cytochrome P450 2c8 (CYP2c8) plays a minor role in (S)-(+)-and (R)-(-)-ibuprofen hydroxylation in vitro. Drug Metabolism and Disposition : The Biological Fate of Chemicals, Journal of Biochemical and Molecular Toxicology, vol.1340, issue.512, pp.279-286, 1999.

. Calle, Meat consumption and risk of colorectal cancer, JAMA, vol.293, issue.2, pp.172-182, 2005.

W. W. Chen, M. Niepel, and P. K. Sorger, Classic and contemporary approaches to modeling biochemical reactions, Genes & Development, vol.24, issue.17, pp.1861-1875, 2010.
DOI : 10.1101/gad.1945410

URL : http://genesdev.cshlp.org/content/24/17/1861.full.pdf

T. A. Chiang, W. Pei-fen, L. S. Ying, L. F. Wang, and Y. C. Ko, Mutagenicity and aromatic amine content of fumes from heated cooking oils produced in Taiwan . Food and Chemical Toxicology, An International Journal Published for the British Industrial Biological Research Association, vol.37, issue.2-3, pp.125-134, 1999.

H. C. Chou, N. P. Lang, and F. F. Kadlubar, Metabolic activation of N-hydroxy arylamines and N-hydroxy heterocyclic amines by human sulfotransferase(s), Cancer Research, vol.55, issue.3, pp.525-529, 1995.

A. Cornish-bowden, One hundred years of Michaelis???Menten kinetics, Perspectives in Science, vol.4, pp.3-9, 2015.
DOI : 10.1016/j.pisc.2014.12.002

URL : https://hal.archives-ouvertes.fr/hal-01429930

R. S. Costa, D. Machado, I. Rocha, and E. C. Ferreira, Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis???Menten and approximate kinetic equations, Biosystems, vol.100, issue.2, pp.150-157, 2010.
DOI : 10.1016/j.biosystems.2010.03.001

E. Croom, Metabolism of Xenobiotics of Human Environments, Progress in Molecular Biology and Translational Science, vol.112, pp.31-88, 2012.
DOI : 10.1016/B978-0-12-415813-9.00003-9

G. Cruciani, E. Carosati, K. Benoit-de-boeck, C. Ethirajulu, T. Mackie et al., MetaSite:?? Understanding Metabolism in Human Cytochromes from the Perspective of the Chemist, Journal of Medicinal Chemistry, vol.48, issue.22, pp.486970-6979, 2005.
DOI : 10.1021/jm050529c

A. Dalby, J. G. Nourse, W. D. Hounshell, A. K. Gushurst, D. L. Grier et al., Description of several

N. L. Dang, T. B. Hughes, V. Krishnamurthy, and S. Swamidass, A simple model predicts UGT-mediated metabolism, Bioinformatics, vol.10, issue.20, pp.323183-3189, 2016.
DOI : 10.1021/ci400518g

F. Darvas, Metabolexpert : An Expert System for Predicting Metabolism of Substances (eds) QSAR in Environmental Toxicology -II, pp.71-81, 1987.

V. Delannée, S. Langouët, N. Théret, and A. Siegel, Figure S3: Docking of the MeIQx with the CYP1A2 by using SwissDock, PeerJ, vol.6, issue.5, p.3703, 2017.
DOI : 10.7717/peerj.3703/supp-5

C. Juan, J. F. Domínguez-romero, R. García-reyes, P. Martínez-romero, E. Berton et al., Combined data mining strategy for the systematic identification of sport drug metabolites in urine by liquid chromatography time-of-flight mass spectrometry, Analytica Chimica Acta, vol.761, pp.1-10, 2013.

M. Drack, W. Apfalter, D. Pouvreau, . On, . The et al., On the Making of a System Theory of Life: Paul A Weiss and Ludwig von Bertalanffy's Conceptual Connection, The Quarterly Review of Biology, vol.82, issue.4, pp.349-373, 2007.
DOI : 10.1086/522810

D. L. Eaton, E. P. Gallagher, T. K. Bammler, and K. L. Kunze, Role of cytochrome P4501A2 in chemical carcinogenesis: implications for human variability in expression and enzyme activity, Pharmacogenetics, vol.5, issue.5, pp.259-274, 1995.
DOI : 10.1097/00008571-199510000-00001

B. Eiermann, P. Olof-edlund, and A. Tjernberg, Per Dalén, Marja-Liisa Dahl, and Leif Bertilsson. 1-and 3-Hydroxylations

O. Hydroxylation and . Debrisoquine, Are Catalyzed by Cytochrome P450 2d6 in Humans, Drug Metabolism and Disposition, vol.26, issue.11, pp.1096-1101, 1998.

J. Mark, S. Embrechts, and . Ekins, Classification of metabolites with kernelpartial least squares (K-PLS) Drug Metabolism and Disposition : The Biological Fate of Chemicals, pp.325-327, 2007.

A. Henri, W. H. Favre, and . Powell, Nomenclature of Organic Chemistry, 2013.

A. Feizi and S. Bordel, Metabolic and protein interaction sub-networks controlling the proliferation rate of cancer cells and their impact on patient survival, Scientific Reports, vol.8, issue.1, p.3041, 2013.
DOI : 10.1186/1471-2105-8-9

D. A. Fell and J. R. Small, Fat synthesis in adipose tissue. An examination of stoichiometric constraints, Biochemical Journal, vol.238, issue.3, pp.781-786, 1986.
DOI : 10.1042/bj2380781

J. Felton, M. Jagerstad, . Knize, K. Skog, and . Wakabayashi, Contents in foods, beverages and tobacco Food Borne Carcinogens Heterocyclic Amines, pp.31-71, 2000.

J. Fisher and T. A. Henzinger, Executable cell biology, Nature Biotechnology, vol.2034, issue.11, pp.1239-1249, 2007.
DOI : 10.1038/nbt1356

O. Folger, L. Jerby, C. Frezza, E. Gottlieb, E. Ruppin et al., Predicting selective drug targets in cancer through metabolic networks, Molecular Systems Biology, vol.41, issue.1, p.501, 2011.
DOI : 10.1371/journal.pbio.1000328

. Null-franklin, The N-glucuronidation of xenobiotics An aspet-supported symposium held at the 1996 faseb meeting in washington, dc. Drug Metabolism and Disposition : The Biological Fate of Chemicals, p.829, 1998.

C. B. Frederick, C. C. Weis, T. J. Flammang, C. N. Martin, and F. F. Kadlubar, Hepatic N-oxidation, acetyl-transfer and DNA-binding of the acetylated metabolites of the carcinogen, benzidine, Carcinogenesis, vol.6, issue.7, pp.959-965, 1985.
DOI : 10.1093/carcin/6.7.959

R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic et al., Glide:?? A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy, Journal of Medicinal Chemistry, vol.47, issue.7, pp.471739-1749, 2004.
DOI : 10.1021/jm0306430

N. Gamage, A. Barnett, N. Hempel, R. G. Duggleby, K. F. Windmill et al., Human Sulfotransferases and Their Role in Chemical Metabolism, Toxicological Sciences, vol.90, issue.1, pp.5-22, 2006.
DOI : 10.1016/1357-2725(95)00164-6

J. Gao, L. B. Ellis, and L. P. Wackett, The University of Minnesota Biocatalysis/Biodegradation Database: improving public access, Nucleic Acids Research, vol.40, issue.suppl_1, pp.488-491, 2010.
DOI : 10.1021/ci9902696

M. Gibis, Heterocyclic Aromatic Amines in Cooked Meat Products: Causes, Formation, Occurrence, and Risk Assessment, Comprehensive Reviews in Food Science and Food Safety, vol.57, issue.507, pp.269-302, 2016.
DOI : 10.1016/S0260-8774(02)00273-X

H. Girard, L. M. Butler, L. Villeneuve, R. C. Millikan, R. Sinha et al., UGT1A1 and UGT1A9 functional variants, meat intake, and colon cancer, among Caucasians and African-Americans, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.644, issue.1-2, pp.56-63, 2008.
DOI : 10.1016/j.mrfmmm.2008.07.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570038/pdf

H. Girard, J. Thibaudeau, M. H. Court, L. Fortier, L. Villeneuve et al., UGT1A1 polymorphisms are important determinants of dietary carcinogen detoxification in the liver, Hepatology, vol.43, issue.507, pp.42448-457, 2005.
DOI : 10.1111/j.1349-7006.1994.tb02933.x

D. Gu, L. Mcnaughton, D. Lemaster, B. G. Lake, N. J. Gooderham et al., ]pyridine, and Their Metabolites in Human Urine, Chemical Research in Toxicology, vol.23, issue.4, pp.788-801, 2010.
DOI : 10.1021/tx900436m

F. P. Guengerich and C. G. Turvy, Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples, The Journal of Pharmacology and Experimental Therapeutics, vol.256, issue.3, pp.1189-1194, 1991.

F. and P. Guengerich, Cytochrome P450 and Chemical Toxicology, Chemical Research in Toxicology, vol.21, issue.1, pp.70-83, 2008.
DOI : 10.1021/tx700079z

R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers et al., Universally sloppy parameter sensitivities in systems biology models, PLoS computational biology, vol.3, issue.10, pp.1871-1878, 2007.

T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye et al., Glide:?? A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening, Journal of Medicinal Chemistry, vol.47, issue.7, pp.471750-1759, 2004.
DOI : 10.1021/jm030644s

G. J. Hammons, F. Peter-guengerich, C. C. Weis, F. A. Beland, and F. F. Kadlubar, Metabolic Oxidation of Carcinogenic Arylamines by Rat, Dog, and Human Hepatic Microsomes and by Purified Flavin-containing and Cytochrome P-450 Monooxygenases, Cancer Research, issue.8, pp.453578-3585, 1985.

D. W. Hein and D. W. Hein, N-Acetyltransferase genetics and their role in predisposition to aromatic and heterocyclic amine-induced carcinogenesis N-acetyltransferase 2 genetic polymorphism : effects of carcinogen and haplotype on urinary bladder cancer risk, Toxicology Letters Oncogene, issue.11, pp.112-113349, 2000.

D. W. Hein, M. A. Doll, A. J. Fretland, M. A. Leff, S. J. Webb et al., Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms, Cancer Epidemiology, vol.9, issue.1, pp.29-42, 2000.

D. Hein, M. Doll, . Rustan, . Gray, R. J. Feng et al., Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases, Carcinogenesis, vol.14, issue.8, pp.141633-1638, 1993.
DOI : 10.1093/carcin/14.8.1633

D. W. Hein, T. D. Rustan, R. J. Ferguson, M. A. Doll, and K. Gray, Metabolic activation of aromatic and heterocyclicN-hydroxyarylamines by wild-type and mutant recombinant human NAT1 and NAT2 acetyltransferases, Archives of Toxicology, vol.33, issue.65, pp.129-133, 1994.
DOI : 10.1016/0378-1119(85)90120-9

D. W. Hein, Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.506, issue.507, pp.506-50765, 2002.
DOI : 10.1016/S0027-5107(02)00153-7

S. Heller, A. Mcnaught, S. Stein, D. Tchekhovskoi, and I. Pletnev, InChI - the worldwide chemical structure identifier standard, Journal of Cheminformatics, vol.5, issue.1, p.7, 2013.
DOI : 10.1186/1758-2946-4-39

M. Hennemann, A. Friedl, M. Lobell, J. Keldenich, A. Hillisch et al., CypScore: Quantitative Prediction of Reactivity toward Cytochromes P450 Based on Semiempirical Molecular Orbital Theory, ChemMedChem, vol.9, issue.4, pp.657-669, 2009.
DOI : 10.1016/B978-0-08-051337-9.50012-2

R. Heredia-ortiz, A. Maître, D. Barbeau, M. Lafontaine, and M. Bouchard, Use of Physiologically-Based Pharmacokinetic Modeling to Simulate the Profiles of 3-Hydroxybenzo(a)pyrene in Workers Exposed to Polycyclic Aromatic Hydrocarbons, PLoS ONE, vol.85, issue.6, p.102570, 2014.
DOI : 10.1371/journal.pone.0102570.s001

T. Hiroi and T. Chow, Catalytic Specificity of CYP2D Isoforms in Rat and Human, Drug Metabolism and Disposition, vol.30, issue.9, pp.970-976, 2002.
DOI : 10.1124/dmd.30.9.970

K. Hu and F. Chen, Identification of significant pathways in gastric cancer based on protein-protein interaction networks and cluster analysis, Genetics and Molecular Biology, vol.8, issue.3, pp.701-708, 2012.
DOI : 10.1111/j.1443-9573.2007.00280.x

T. B. Hughes, N. L. Dang, G. P. Miller, and S. Swamidass, Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network, ACS Central Science, vol.2, issue.8, pp.529-537, 2016.
DOI : 10.1021/acscentsci.6b00162

T. B. Hughes, G. P. Miller, and S. Swamidass, Site of Reactivity Models Predict Molecular Reactivity of Diverse Chemicals with Glutathione, Chemical Research in Toxicology, vol.28, issue.4, pp.797-809, 2015.
DOI : 10.1021/acs.chemrestox.5b00017

K. Ikeya, A. K. Jaiswal, R. A. Owens, J. E. Jones, D. W. Nebert et al., Human CYP1a2 : sequence, gene structure, comparison with the mouse and rat orthologous gene, and differences in liver 1a2 mRNA expression, Molecular Endocrinology, issue.9, pp.31399-1408, 1989.

M. Iwasaki, Y. Yoshimura, S. Asahi, K. Saito, S. Sakai et al., Functional Characterization of Single Nucleotide Polymorphisms with Amino Acid Substitution in CYP1A2, CYP2A6, and CYP2B6 Found in the Japanese Population, Functional characterization of single nucleotide polymorphisms with amino acid substitution in CYP1a2, CYP2a6, and CYP2b6 found in the Japanese population, pp.444-452, 2004.
DOI : 10.2133/dmpk.19.444

N. Jeliazkova and V. Jeliazkov, AMBIT RESTful web services: an implementation of the OpenTox application programming interface, Journal of Cheminformatics, vol.3, issue.1, p.18, 2011.
DOI : 10.1007/978-3-642-10871-6_27

L. Jerby and E. Ruppin, Predicting Drug Targets and Biomarkers of Cancer via Genome-Scale Metabolic Modeling, Clinical Cancer Research, vol.18, issue.20, pp.5572-5584, 2012.
DOI : 10.1158/1078-0432.CCR-12-1856

L. Jiang, S. Liang, C. Wang, G. Ge, X. Huo et al., Identifying and applying a highly selective probe to simultaneously determine the O-glucuronidation activity of human UGT1A3 and UGT1A4, Scientific Reports, vol.17, issue.1, 2015.
DOI : 10.1208/s12248-014-9658-8

Z. Jiang, N. Dragin, L. F. Jorge-nebert, M. V. Martin, F. Peter-guengerich et al., Search for an association between the human CYP1A2 genotype and CYP1A2 metabolic phenotype, Pharmacogenetics and Genomics, vol.16, issue.5, pp.359-367, 2006.
DOI : 10.1097/01.fpc.0000204994.99429.46

A. Kenneth, R. S. Johnson, and . Goody, The Original Michaelis Constant : Translation of the 1913 Michaelis?Menten Paper, Biochemistry, vol.50, issue.39, pp.8264-8269, 2011.

H. Jones and K. Rowland-yeo, Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT : pharmacometrics & systems pharmacology, p.63, 2013.

F. Kadlubar, R. K. Kaderlik, G. J. Mulder, D. Lin, M. A. Butler et al., Metabolic activation and DNA adduct detection of PhIP in dogs, rats, and humans in relation to urinary bladder and colon carcinogenesis, Princess Takamatsu Symposia, vol.23, pp.207-213, 1995.

F. F. Kadlubar, M. A. Butler, K. R. Kaderlik, H. C. Chou, and N. P. Lang, Polymorphisms for aromatic amine metabolism in humans: relevance for human carcinogenesis, Environmental Health Perspectives, vol.98, pp.69-74, 1992.
DOI : 10.1289/ehp.929869

F. F. Kadlubar, J. A. Miller, and E. C. Miller, Hepatic Microsomal N-Glucuronidation and Nucleic Acid Binding of N-Hydroxy Arylamines in Relation to Urinary Bladder Carcinogenesis, Cancer Research, vol.37, issue.3, pp.805-814, 1977.

S. Kaivosaari, M. Finel, and M. Koskinen, -glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases, Xenobiotica, vol.32, issue.8, pp.41652-669, 2011.
DOI : 10.1124/dmd.109.030981

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Research, vol.28, issue.1, pp.27-30, 2000.
DOI : 10.1093/nar/28.1.27

M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi et al., Data, information, knowledge and principle: back to metabolism in KEGG, Nucleic Acids Research, vol.42, issue.D1, pp.199-205, 2014.
DOI : 10.1021/ci200367w

R. Kato, Metabolic activation of mutagenic heterocylic aromatic amines from protein pyrolysates, CRC Critical Reviews in Toxicology, vol.129, issue.4, pp.307-348, 1986.
DOI : 10.1016/0027-5107(84)90117-9

K. L. Tony, M. H. Kiang, T. K. Ensom, and . Chang, UDPglucuronosyltransferases and clinical drug-drug interactions, Pharmacology & Therapeutics, vol.106, issue.1, pp.97-132, 2005.

H. Uk and K. , Seung Bum Sohn, and Sang Yup Lee. Metabolic network modeling and simulation for drug targeting and discovery, Biotechnology Journal, vol.7, issue.3, pp.330-342, 2012.

J. Kirchmair, M. J. Williamson, J. D. Tyzack, L. Tan, P. J. Bond et al., Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms, Journal of Chemical Information and Modeling, vol.52, issue.3, pp.617-648, 2012.
DOI : 10.1021/ci200542m

H. Kitano, Foundations of Systems Biology, 2001.

H. Kitano, Systems Biology: A Brief Overview, Science, vol.295, issue.5560, pp.2951662-1664, 2002.
DOI : 10.1126/science.1069492

R. Kiwamoto, A. Spenkelink, I. M. Rietjens, and A. Punt, An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne ??,??-unsaturated aldehydes, Toxicology and Applied Pharmacology, vol.282, issue.1, pp.108-117, 2015.
DOI : 10.1016/j.taap.2014.10.014

G. Klopman, M. Dimayuga, and J. Talafous, META. 1. A Program for the Evaluation of Metabolic Transformation of Chemicals, Journal of Chemical Information and Modeling, vol.34, issue.6, pp.1320-1325, 1994.
DOI : 10.1021/ci00022a014

G. Klopman, M. Tu, and J. Talafous, META. 3. A Genetic Algorithm for Metabolic Transform Priorities Optimization, Journal of Chemical Information and Computer Sciences, vol.37, issue.2, pp.329-334, 1997.
DOI : 10.1021/ci9601123

S. Knasmüller, M. Murkovic, W. Pfau, and G. Sontag, Heterocyclic aromatic amines???still a challenge for scientists, Journal of Chromatography B, vol.802, issue.1, pp.1-2, 2004.
DOI : 10.1016/j.jchromb.2003.11.017

C. Knox, V. Law, T. Jewison, P. Liu, S. Ly et al., DrugBank 3.0: a comprehensive resource for 'Omics' research on drugs, Nucleic Acids Research, vol.7, issue.suppl_1, pp.39-1035, 2011.
DOI : 10.1186/1471-2105-7-523

J. S. Knutsen, B. D. Kerger, B. Finley, and D. J. Paustenbach, A calibrated human PBPK model for benzene inhalation with urinary bladder and bone marrow compartments. Risk Analysis : An Official Publication of the Society for Risk Analysis, pp.1237-1251, 2013.

M. Krauss, S. Schaller, S. Borchers, R. Findeisen, J. Lippert et al., Integrating Cellular Metabolism into a Multiscale Whole-Body Model, PLoS Computational Biology, vol.21, issue.10, p.1002750, 2012.
DOI : 10.1371/journal.pcbi.1002750.s001

URL : http://doi.org/10.1371/journal.pcbi.1002750

M. Krauss, R. Burghaus, J. Lippert, M. Niemi, P. Neuvonen et al., Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification, Silico Pharmacology, 2013.
DOI : 10.1021/jm030999b

L. Kuepfer, C. Niederalt, T. Wendl, J. Schlender, S. Willmann et al., Applied Concepts in PBPK Modeling : How to Build a PBPK/PD Model. CPT : pharmacometrics & systems pharmacology, pp.516-531, 2016.

L. Kuepfer, Towards whole-body systems physiology, Molecular Systems Biology, vol.6, issue.409, 2010.
DOI : 10.1038/clpt.2009.151

URL : http://msb.embopress.org/content/msb/6/1/409.full.pdf

K. S. Kulp, M. G. Knize, N. D. Fowler, C. P. Salmon, and J. S. Felton, PhIP metabolites in human urine after consumption of well-cooked chicken, Journal of Chromatography B, vol.802, issue.1, pp.143-153, 2004.
DOI : 10.1016/j.jchromb.2003.09.032

K. S. Kulp, M. G. Knize, M. A. Malfatti, C. P. Salmon, and J. S. Felton, Identification of urine metabolites of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine following consumption of a single cooked chicken meal in humans, Carcinogenesis, vol.21, issue.11, pp.2065-2072, 2000.
DOI : 10.1093/carcin/21.11.2065

J. W. Lampe, I. B. King, S. Li, M. T. Grate, K. V. Barale et al., Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets, Carcinogenesis, vol.21, issue.6, pp.1157-1162, 2000.
DOI : 10.1038/clpt.1991.205

N. P. Lang, M. A. Butler, J. Massengill, M. Lawson, R. C. Stotts et al., Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501a2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps, Cancer Epidemiology, vol.3, issue.8, pp.675-682, 1994.

S. Langouët, D. Welti, L. Kerriguy, T. Fay, J. Huynh-ba et al., ]quinoxaline-8-carboxylic Acid Is a Major Detoxication Pathway Catalyzed by Cytochrome P450 1A2, Chemical Research in Toxicology, vol.14, issue.2, pp.211-221, 2001.
DOI : 10.1021/tx000176e

S. Langouët, A. Paehler, D. H. Welti, N. Kerriguy, A. Guillouzo et al., Differential metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rat and human hepatocytes, Carcinogenesis, vol.23, issue.1, pp.115-122, 2002.
DOI : 10.1093/carcin/23.1.115

L. , L. Marchand, A. A. Franke, L. Custer, L. R. Wilkens et al., Lifestyle and nutritional correlates of cytochrome CYP1a2 activity : inverse associations with plasma lutein and alpha-tocopherol, Pharmacogenetics, vol.7, issue.1, pp.11-19, 1997.

L. Le-marchand, J. H. Hankin, L. R. Wilkens, L. M. Pierce, A. Franke et al., Combined effects of well-done red meat, smoking, and rapid

E. Lee, A. Salic, R. Krüger, R. Heinrich, and M. W. Kirschner, The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway, PLoS Biology, vol.274, issue.1, p.10, 2003.
DOI : 10.1371/journal.pbio.0000010.st002

J. A. Leonard, Y. Tan, M. Gilbert, K. Isaacs, and H. El-masri, Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling, Toxicological Sciences, vol.27, issue.1, pp.57-70, 2016.
DOI : 10.1093/toxsci/kfn225

J. Li, T. Severin, J. Schneebeli, R. Bylund, R. A. Farid et al., IDSite: An Accurate Approach to Predict P450-Mediated Drug Metabolism, Journal of Chemical Theory and Computation, vol.7, issue.11, pp.3829-3845, 2011.
DOI : 10.1021/ct200462q

D. Lin, D. J. Meyer, B. Ketterer, N. P. Lang, and F. F. Kadlubar, Effects of human and rat glutathione S-transferases on the covalent DNA binding of the N-acetoxy derivatives of heterocyclic amine carcinogens in vitro : a possible mechanism of organ specificity in their carcinogenesis, Cancer Research, issue.18, pp.544920-4926, 1994.

D. Liska, The detoxification enzyme systems Alternative medicine review : a journal of clinical therapeutic, pp.187-198, 1998.

R. Mahadevan, J. S. Edwards, and F. J. Doyle, Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli, Biophysical Journal, vol.83, issue.3, pp.1331-1340, 2002.
DOI : 10.1016/S0006-3495(02)73903-9

T. Maiwald and J. Timmer, Dynamical modeling and multi-experiment fitting with PottersWheel, Bioinformatics, vol.6, issue.18, pp.2037-2043, 2008.
DOI : 10.1214/aos/1176344136

URL : https://academic.oup.com/bioinformatics/article-pdf/24/18/2037/16882181/btn350.pdf

D. Majumdar, C. Dutta, and S. Sen, Inhalation exposure or body burden? Better way of estimating risk ??? An application of PBPK model, Environmental Toxicology and Pharmacology, vol.41, pp.54-61, 2016.
DOI : 10.1016/j.etap.2015.11.004

M. A. Malfatti and J. S. Felton, N-Glucuronidation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) and N-hydroxy-PhIP by specific human UDP-glucuronosyltransferases, Carcinogenesis, vol.22, issue.7, pp.1087-1093, 2001.
DOI : 10.1074/jbc.273.15.8719

A. Michael, J. S. Malfatti, and . Felton, Human UDP-glucuronosyltransferase 1a1 is the primary enzyme responsible for the N-glucuronidation of N-hydroxy- PhIP in vitro, Chemical Research in Toxicology, vol.17, issue.8, pp.1137-1144, 2004.

S. Manabe, K. Tohyama, O. Wada, and T. Aramaki, ]pyridine (PhIP), in cigarette smoke condensate, Carcinogenesis, vol.12, issue.10, pp.121945-1947, 1991.
DOI : 10.1093/carcin/12.10.1945

C. A. Marchant, K. A. Briggs, and A. Long, In Silico Tools for Sharing Data and Knowledge on Toxicity and Metabolism: Derek for Windows, Meteor, and Vitic, Toxicology Mechanisms and Methods, vol.30, issue.1, pp.177-187, 2008.
DOI : 10.1080/10629360601054255

Y. Masubuchi, S. Hosokawa, T. Horie, T. Suzuki, S. Ohmori et al., Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2d6 as ring-hydroxylase and CYP1a2 as N-desisopropylase. Drug Metabolism and Disposition : The Biological Fate of Chemicals, pp.909-915, 1994.

Y. Masubuchi, N. Kagimoto, S. Narimatsu, S. Fujita, and T. Suzuki, Regioselective contribution of the cytochrome P-450 2d subfamily to propranolol metabolism in rat liver microsomes. Drug Metabolism and Disposition : The Biological Fate of Chemicals, pp.1012-1016, 1993.

T. Matsumoto, D. Yoshida, and H. Tomita, Determination of mutagens, amino-??-carbolines in grilled foods and cigarette smoke condensate, Cancer Letters, vol.12, issue.1-2, pp.105-110, 1981.
DOI : 10.1016/0304-3835(81)90045-8

G. Ovanes, S. D. Mekenyan, T. S. Dimitrov, G. D. Pavlov, and . Veith, A systematic approach to simulating metabolism in computational toxicology . I. The TIMES heuristic modelling framework, Current Pharmaceutical Design, vol.10, issue.11, pp.1273-1293, 2004.

M. Meyer, S. Schneckener, B. Ludewig, L. Kuepfer, and J. Lippert, Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling. Drug Metabolism and Disposition : The Biological Fate of Chemicals, pp.892-901, 2012.

V. Moreno, H. Glatt, E. Guino, E. Fisher, W. Meinl et al., Polymorphisms in sulfotransferasesSULT1A1 andSULT1A2 are not related to colorectal cancer, International Journal of Cancer, vol.10, issue.507, pp.683-686, 2005.
DOI : 10.1016/S0027-5107(02)00164-1

M. Garrett, R. Morris, W. Huey, M. F. Lindstrom, R. K. Sanner et al., AutoDock4 and AutoDock- Tools4 : Automated docking with selective receptor flexibility, Journal of Computational Chemistry, vol.30, issue.16, pp.2785-2791, 2009.

C. Kenneth, F. A. Morton, F. E. Beland, N. F. Evans, F. F. Fullerton et al., Metabolic Activation of N-Hydroxy-N,N'diacetylbenzidine by Hepatic Sulfotransferase, Cancer Research, vol.40, issue.3, pp.751-757, 1980.

D. R. Mould and R. N. Upton, Basic concepts in population modeling, simulation , and model-based drug development. CPT : pharmacometrics & systems pharmacology, p.6, 2012.

M. P. Smithing and F. Darvas, HazardExpert, ACS Symposium series American Chemical Society, 1992.
DOI : 10.1021/bk-1992-0484.ch019

E. Muckel, H. Frandsen, and H. R. Glatt, Heterologous expression of human Nacetyltransferases 1 and 2 and sulfotransferase 1a1 in Salmonella typhimurium for mutagenicity testing of heterocyclic amines. Food and Chemical Toxicology, An International Journal Published for the British Industrial Biological Research Association, issue.8, pp.401063-1068, 2002.

M. Murkovic, Formation of heterocyclic aromatic amines in model systems, Journal of Chromatography B, vol.802, issue.1, pp.3-10, 2004.
DOI : 10.1016/j.jchromb.2003.09.026

W. Ni, L. Mcnaughton, D. M. Lemaster, R. Sinha, and R. J. Turesky, Quantitation of 13 Heterocyclic Aromatic Amines in Cooked Beef, Pork, and Chicken by Liquid Chromatography???Electrospray Ionization/Tandem Mass Spectrometry, Journal of Agricultural and Food Chemistry, vol.56, issue.1, pp.68-78, 2008.
DOI : 10.1021/jf072461a

S. Nowell and C. N. Falany, Pharmacogenetics of human cytosolic sulfotransferases, Oncogene, vol.25, issue.11, pp.1673-1678, 2006.
DOI : 10.1038/sj.onc.1209376

. Lang, Analysis of total meat intake and exposure to individual heterocyclic amines in a case-control study of colorectal cancer : contribution of metabolic variation to risk, Mutation Research, pp.506-507175, 2002.

D. N. Won-seok-oh, J. Kim, K. Jung, K. Cho, and . No, New combined model for the prediction of regioselectivity in cytochrome P450/3a4 mediated metabolism, Journal of Chemical Information and Modeling, vol.48, issue.3, pp.591-601, 2008.

L. Olsen, C. Oostenbrink, and F. Steen-jørgensen, Prediction of cytochrome P450 mediated metabolism, Advanced Drug Delivery Reviews, vol.86, pp.61-71, 2015.
DOI : 10.1016/j.addr.2015.04.020

N. Zoltán, A. Oltvai, and . Barabási, Life's complexity pyramid, Science, vol.298, issue.5594, pp.763-764, 2002.

J. D. Orth, I. Thiele, Ø. Bernhard, and . Palsson, What is flux balance analysis?, Nature Biotechnology, vol.19, issue.3, pp.245-248, 2010.
DOI : 10.1038/nrmicro1949

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565/pdf

A. Orzechowski, D. Schrenk, and K. W. Bock, Metabolism of 1- and 2-naphthylamine in isolated rat hepatocytes, Carcinogenesis, vol.13, issue.12, pp.2227-2232, 1992.
DOI : 10.1093/carcin/13.12.2227

F. Oz and M. Kaya, HETEROCYCLIC AROMATIC AMINES IN MEAT, Journal of Food Processing and Preservation, vol.201, issue.182, pp.739-753, 2011.
DOI : 10.1016/0027-5107(88)90124-8

S. Ozawa, H. C. Chou, F. F. Kadlubar, K. Nagata, Y. Yamazoe et al., Activation of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b] pyridine by cDNA-expressed human and rat arylsulfotransferases, Japanese Journal of Cancer Research, issue.12, pp.851220-1228, 1994.

P. Pais and M. G. Knize, Chromatographic and related techniques for the determination of aromatic heterocyclic amines in foods, Journal of Chromatography B: Biomedical Sciences and Applications, vol.747, issue.1-2, pp.139-169, 2000.
DOI : 10.1016/S0378-4347(00)00118-3

E. T. Papoutsakis, Equations and calculations for fermentations of butyric acid bacteria, Biotechnology and Bioengineering, vol.44, issue.2, pp.174-187, 1984.
DOI : 10.1099/00221287-104-1-91

A. Parkinson and B. W. Ogilvie, Chapter 6 Biotransformation of Xenobiotics | Casarett & Doull's Essentials of Toxicology, 2e | AccessPharmacy | McGraw-Hill Medical, 2010.

G. Patlewicz, N. Jeliazkova, R. J. Safford, A. P. Worth, and B. Aleksiev, An evaluation of the implementation of the Cramer classification scheme in the Toxtree software, SAR and QSAR in Environmental Research, vol.25, issue.5-6, pp.5-6495, 2008.
DOI : 10.1254/fpj.96.4_185

C. Patrianakos and D. Hoffmann, Chemical Studies on Tobacco Smoke LXIV. On the Analysis of Aromatic Amines in Cigarette Smoke*, Journal of Analytical Toxicology, vol.3, issue.4, pp.150-154, 1979.
DOI : 10.1093/jat/3.4.150

L. Megan, . Peach, V. Alexey, R. Zakharov, A. Liu et al., Computational tools and resources for metabolism-related property predictions. 1. Overview of publicly available (free and commercial) databases and software, Future medicinal chemistry, vol.4, issue.15, pp.1907-1932, 2012.

A. Pelander, E. Tyrkkö, and I. Ojanperä, In silico methods for predicting metabolism and mass fragmentation applied to quetiapine in liquid chromatography/time-of-flight mass spectrometry urine drug screening, Rapid communications in mass spectrometry : RCM, pp.506-514, 2009.

P. Piechota, T. D. Mark, M. Cronin, J. C. Hewitt, and . Madden, Pragmatic Approaches to Using Computational Methods To Predict Xenobiotic Metabolism, Journal of Chemical Information and Modeling, vol.53, issue.6, pp.1282-1293, 2013.
DOI : 10.1021/ci400050v

N. D. Price, J. A. Papin, C. H. Schilling, and B. O. Palsson, Genome-scale microbial in silico models: the constraints-based approach, Trends in Biotechnology, vol.21, issue.4, pp.162-169, 2003.
DOI : 10.1016/S0167-7799(03)00030-1

J. J. Pritchett, R. K. Kuester, and I. G. Sipes, Metabolism of bisphenol a in primary cultured hepatocytes from mice, rats, and humans. Drug Metabolism and Disposition : The Biological Fate of Chemicals, pp.1180-1185, 2002.

B. Arwa, V. B. Raies, and . Bajic, In silico toxicology : computational methods for the prediction of chemical toxicity, Wiley Interdisciplinary Reviews. Computational Molecular Science, vol.6, issue.2, pp.147-172, 2016.

A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling et al., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, vol.11, issue.15, pp.251923-1929, 2009.
DOI : 10.1081/PRE-120024426

J. L. Reed, Ø. Bernhard, and . Palsson, Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli, Journal of Bacteriology, vol.185, issue.9, pp.2692-2699, 2003.
DOI : 10.1128/JB.185.9.2692-2699.2003

L. Ridder and M. Wagener, SyGMa: Combining Expert Knowledge and Empirical Scoring in the Prediction of Metabolites, ChemMedChem, vol.45, issue.5, pp.821-832, 2008.
DOI : 10.1002/cmdc.200700312

M. C. Ivonne and . Rietjens, Jochem Louisse, and Ans Punt Tutorial on physiologically based kinetic modeling in molecular nutrition and food research, Molecular Nutrition & Food Research, vol.55, issue.6, pp.941-956, 2011.

M. Rostkowski, O. Spjuth, and P. Rydberg, WhichCyp: prediction of cytochromes P450 inhibition, Bioinformatics, vol.40, issue.16, pp.2051-2052, 2013.
DOI : 10.1093/nar/gkr1132

P. Roy, O. Tretyakov, J. Wright, and D. J. Waxman, Stereoselective metabolism of ifosfamide by human P-450s 3a4 and 2b6. Favorable metabolic properties of Renantiomer . Drug Metabolism and Disposition : The Biological Fate of Chemicals, pp.1309-1318, 1999.

A. Rudik, A. Dmitriev, A. Lagunin, D. Filimonov, and V. Poroikov, SOMP : web server for in silico prediction of sites of metabolism for drug-like compounds, Bioinformatics, issue.12, pp.312046-2048, 2015.

A. V. Rudik, M. Vladislav, A. V. Bezhentsev, D. S. Dmitriev, A. A. Druzhilovskiy et al., MetaTox: Web Application for Predicting Structure and Toxicity of Xenobiotics??? Metabolites, Journal of Chemical Information and Modeling, vol.57, issue.4, pp.638-642, 2017.
DOI : 10.1021/acs.jcim.6b00662

A. V. Rudik, A. V. Dmitriev, A. A. Lagunin, D. A. Filimonov, and V. V. Poroikov, Metabolism Site Prediction Based on Xenobiotic Structural Formulas and PASS Prediction Algorithm, Journal of Chemical Information and Modeling, vol.54, issue.2, pp.498-507, 2014.
DOI : 10.1021/ci400472j

P. Rydberg, D. E. Gloriam, and L. Olsen, The SMARTCyp cytochrome P450 metabolism prediction server, Bioinformatics, vol.26, issue.23, pp.2988-2989, 2010.
DOI : 10.1093/bioinformatics/btp140

P. Rydberg, D. E. Gloriam, J. Zaretzki, C. Breneman, and L. Olsen, SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism, ACS Medicinal Chemistry Letters, vol.1, issue.3, pp.96-100, 2010.
DOI : 10.1021/ml100016x

J. E. Sager, J. Yu, I. Ragueneau-majlessi, and N. Isoherranen, Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches : A Systematic Review of Published Models, Applications, and Model Verification. Drug Metabolism and Disposition : The Biological Fate of Chemicals, pp.1823-1837, 2015.

K. Saito, Y. Yamazoe, T. Kamataki, and R. Kato, Activation and detoxication of N-hydroxy-Trp-P-2 by glutathione and glutathione transferases, Carcinogenesis, vol.4, issue.12, pp.1551-1557, 1983.
DOI : 10.1093/carcin/4.12.1551

R. Sandhu, T. Georgiou, E. Reznik, L. Zhu, I. Kolesov et al., Graph Curvature for Differentiating Cancer Networks, Scientific Reports, vol.31, issue.1, p.12323, 2015.
DOI : 10.1307/mmj/1029003026

J. Schlender, M. Meyer, K. Thelen, M. Krauss, S. Willmann et al., Development of a Whole-Body Physiologically Based Pharmacokinetic Approach to Assess the Pharmacokinetics of Drugs in Elderly Individuals, Clinical Pharmacokinetics, vol.55, issue.Suppl 3, pp.551573-1589, 2016.
DOI : 10.1002/jcph.579

H. A. Schut, F. B. Daniel, K. M. Schenck, T. R. Loeb, and G. D. Stoner, Metabolism and DNA adduct formation of 2-acetylaminofluorene by bladder explants from human, dog, monkey, hamster and rat, Carcinogenesis, vol.5, issue.10, pp.51287-1292, 1984.
DOI : 10.1093/carcin/5.10.1287

H. A. Schut and E. G. Snyderwine, DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis, Carcinogenesis, vol.20, issue.3, pp.353-368, 1999.
DOI : 10.1021/tx980022n

H. Schweikl, J. A. Taylor, S. Kitareewan, P. Linko, D. Nagorney et al., Expression of CYP1A1 and CYP1A2 genes in human liver, Pharmacogenetics, vol.3, issue.5, pp.239-249, 1993.
DOI : 10.1097/00008571-199310000-00003

T. Shlomi, N. Moran, E. Cabili, and . Ruppin, Predicting metabolic biomarkers of human inborn errors of metabolism, Molecular Systems Biology, vol.14, p.263, 2009.
DOI : 10.1016/j.jchromb.2004.09.023

B. Suresh, L. Q. Singh, M. J. Shen, R. P. Walker, and . Sheridan, A model for predicting likely sites of CYP3a4-mediated metabolism on drug-like molecules, Journal of Medicinal Chemistry, issue.8, pp.461330-1336, 2003.

R. Sinha, S. D. Rothman, . Mark, E. D. Murray, O. A. Brown et al., Lower levels of urinary 2-amino-3,8- dimethylimidazo[4,5-f]-quinoxaline (MelQx) in humans with higher CYP1a2, Carcinogenesis, issue.11, pp.162859-2861, 1995.

C. Keng, V. Soh, and . Hatzimanikatis, DREAMS of metabolism, Trends in Biotechnology, vol.28, issue.10, pp.501-508, 2010.

M. C. Sousa, R. C. Braga, A. S. Bertilha, . Cintra, C. H. Valéria-de-oliveira et al., In silico metabolism studies of dietary flavonoids by CYP1A2 and CYP2C9, Food Research International, vol.50, issue.1, pp.102-1104, 2000.
DOI : 10.1016/j.foodres.2012.09.027

R. Steuer, Computational approaches to the topology, stability and dynamics of metabolic networks, Phytochemistry, vol.68, issue.16-18, pp.16-182139, 2007.
DOI : 10.1016/j.phytochem.2007.04.041

W. G. Stillwell, R. J. Turesky, R. Sinha, and S. R. Tannenbaum, N-oxidative metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) in humans : excretion of the N2-glucuronide conjugate of 2-hydroxyamino-MeIQx in urine, Cancer Res, issue.20, pp.595154-5159, 1999.

J. Shana, P. Sturla, and . Hollenberg, Systems toxicology : a special issue, Chemical Research in Toxicology, vol.27, issue.3, p.311, 2014.

T. Sugimura, Mutagens, carcinogens, and tumor promoters in our daily food, Cancer, vol.83, issue.10, pp.1970-1984, 1982.
DOI : 10.1016/0027-5107(77)90151-8

T. Sugimura, Overview of carcinogenic heterocyclic amines, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.376, issue.1-2, pp.211-219, 1997.
DOI : 10.1016/S0027-5107(97)00045-6

T. Sugimura, . Nagao, . Kawachi, . Honda, Y. Yahagi et al., Mutagencarcinogens in food, with special reference to highly mutagenic pyrolytic products in broiled foods, Origins of Human Cancer, pp.1561-1577, 1977.

T. Sugimura, K. Wakabayashi, H. Nakagama, and M. Nagao, Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish, Cancer Science, vol.143, issue.4, pp.290-299, 2004.
DOI : 10.5271/sjweh.608

J. Talafous, L. M. Sayre, J. J. Mieyal, and G. Klopman, META. 2. A Dictionary Model of Mammalian Xenobiotic Metabolism, Journal of Chemical Information and Modeling, vol.34, issue.6, pp.1326-1333, 1994.
DOI : 10.1021/ci00022a015

Y. Tang, F. Kassie, X. Qian, B. Ansha, and R. J. Turesky, DNA Adduct Formation of 2-Amino-9H-pyrido[2,3-b]indole and 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline in Mouse Liver and Extrahepatic Tissues During a Subchronic Feeding Study, Toxicological Sciences, vol.17, issue.507, pp.248-258, 2013.
DOI : 10.1093/carcin/17.10.2259

Á. Tarcsay and G. M. Keseru, site of metabolism prediction of cytochrome P450-mediated biotransformations, Expert Opinion on Drug Metabolism & Toxicology, vol.6, issue.3, pp.299-312, 2011.
DOI : 10.1021/jp076401j

A. Tarcsay, R. Kiss, and G. M. Keseru, Site of metabolism prediction on cytochrome P450 2C9: a knowledge-based docking approach, Journal of Computer-Aided Molecular Design, vol.6, issue.6, pp.399-408, 2010.
DOI : 10.1007/b139087

T. Teorell, . Studies, . On, . Diffusion, . Upon et al., STUDIES ON THE DIFFUSION EFFECT UPON IONIC DISTRIBUTION: II. EXPERIMENTS ON IONIC ACCUMULATION, The Journal of General Physiology, vol.21, issue.1, pp.107-122, 1937.
DOI : 10.1085/jgp.21.1.107

C. Thiel, S. Schneckener, M. Krauss, A. Ghallab, U. Hofmann et al., A Systematic Evaluation of the Use of Physiologically Based Pharmacokinetic Modeling for Cross-Species Extrapolation, Journal of Pharmaceutical Sciences, vol.104, issue.1, pp.191-206, 2015.
DOI : 10.1002/jps.24214

W. Edine, D. W. Tiemersma, A. Voskuil, E. A. Bunschoten, B. J. Hogendoorn et al., Risk of colorectal adenomas in relation to meat consumption , meat preparation, and genetic susceptibility in a Dutch population, Cancer causes & control : CCC, vol.15, issue.3, pp.225-236, 2004.

A. John, T. C. Timbrell, and . Marrs, Biotransformation of Xenobiotics Applied and Systems Toxicology, General, 2009.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, 2000.
DOI : 10.1002/9783527613106

F. Toribio, M. T. Galceran, and L. Puignou, Separation of heteroaromatic amines in food products, Journal of Chromatography B: Biomedical Sciences and Applications, vol.747, issue.1-2, pp.171-202, 2000.
DOI : 10.1016/S0378-4347(00)00154-7

. Masood-khaksar-toroghi, R. William, R. Cluett, and . Mahadevan, A multi-scale model of the whole human body based on dynamic parsimonious flux balance analysis. IFAC-PapersOnLine, 11th IFAC Symposium on Dynamics and Control of Process SystemsIncluding Biosystems DYCOPS-CAB 2016, pp.937-942, 2016.

T. Totsuka, R. Nishigaki, T. Sugimura, and K. Wakabayashi, The possible involvement of mutagenic and carcinogenic heteroyclic amines in human cancer. in : Skog k, alexander j, editors. acrylamide and other hazardous compounds in heat-treated foods. woodhead publisher ; boca raton, fl, Carcinogenesis, pp.296-515, 2006.

R. J. Turesky-]-r and . Turesky, Metabolism and biodisposition of heterocyclic amines The role of genetic polymorphisms in metabolism of carcinogenic heterocyclic aromatic amines, Prog. Clin. Biol. Res. Current Drug Metabolism, vol.347, issue.52, pp.39-53169, 1990.

R. J. Turesky, R. C. Garner, D. H. Welti, J. Richoz, S. H. Leveson et al., ]quinoxaline in Humans, Chemical Research in Toxicology, vol.11, issue.3, pp.217-225, 1998.
DOI : 10.1021/tx9701891

R. J. Turesky, N. P. Lang, M. A. Butler, C. H. Teitel, and F. F. Kadlubar, Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon, Carcinogenesis, vol.12, issue.10, pp.121839-1845, 1991.
DOI : 10.1093/carcin/12.10.1839

R. J. Turesky, V. Parisod, T. Huynh-ba, S. Langouët, and F. P. Guengerich, ]quinoxaline by Human and Rat Liver Microsomes and Cytochromes P450 1A2, Chemical Research in Toxicology, vol.14, issue.7, pp.14901-911, 2001.
DOI : 10.1021/tx010035s

R. J. Turesky, Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats, Toxicology Letters, vol.168, issue.3, pp.219-227, 2007.
DOI : 10.1016/j.toxlet.2006.10.018

R. J. Turesky, F. Peter-guengerich, A. Guillouzo, and S. Langouët, Metabolism of heterocyclic aromatic amines by human hepatocytes and cytochrome P4501A2, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.506, issue.507, pp.506-507187, 2002.
DOI : 10.1016/S0027-5107(02)00165-3

J. Robert, L. L. Turesky, and . Marchand, Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies : lessons learned from aromatic amines, Chemical Research in Toxicology, vol.24, issue.8, pp.1169-1214, 2011.

A. L. Upthagrove and W. L. Nelson, Importance of amine pKa and distribution coefficient in the metabolism of fluorinated propranolol analogs : metabolism by CYP1A2, Drug Metab. Dispos, vol.29, issue.11, pp.1389-1395, 2001.

J. P. Suzanne, A. Van-den-berg, . Punt, E. M. Ans, J. Soffers et al., Physiologically based kinetic models for the alkenylbenzene elemicin in rat and human and possible implications for risk assessment, Chemical Research in Toxicology, issue.11, pp.252352-2367, 2012.

A. F. Villaverde and J. R. Banga, Reverse engineering and identification in systems biology: strategies, perspectives and challenges, Journal of The Royal Society Interface, vol.34, issue.suppl_1, p.20130505, 2014.
DOI : 10.1093/nar/gkj092

K. Vistisen, H. E. Poulsen, and S. Loft, Foreign compound metabolism capacity in man measured from metabolites of dietary caffeine, Carcinogenesis, vol.13, issue.9, pp.1561-1568, 1992.
DOI : 10.1093/carcin/13.9.1561

V. Ludwig and . Bertalanffy, General System Theory : Foundations, Development, Applications, 1968.

D. G. Walters, P. J. Young, C. Agus, M. G. Knize, A. R. Boobis et al., Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans, Carcinogenesis, vol.25, issue.9, pp.251659-1669, 2004.
DOI : 10.1093/carcin/bgh164

M. Wang, M. Weiss, M. Simonovic, G. Haertinger, S. P. Schrimpf et al., PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life, Molecular & Cellular Proteomics, vol.6, issue.8, pp.11492-500, 2012.
DOI : 10.1126/science.1158441

D. Weininger, SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, Journal of Chemical Information and Modeling, vol.28, issue.1, pp.31-36, 1988.
DOI : 10.1021/ci00057a005

E. K. Weisburger and J. H. Weisburger, Chemistry, Carcinogenicity, and Metabolism of 2-Fluorenamine and Related Compounds, Advances in Cancer Research, vol.5, pp.331-431, 1958.
DOI : 10.1016/S0065-230X(08)60415-7

W. David and . Weisgerber, Chemical Abstracts Service Chemical Registry System : History, scope, and impacts, Journal of the American Society for Information Science, vol.48, issue.4, pp.349-360, 1997.

E. M. Widmark, Presence of Cancer-producing Substances in Roasted Food, Nature, vol.143, issue.3632, pp.984-984, 1939.
DOI : 10.1038/143984a0

L. Egon, J. W. Willighagen, J. Mayfield, A. Alvarsson, L. Berg et al., The Chemistry Development Kit (CDK) v2.0 : atom typing, depiction , molecular formulas, and substructure searching, Journal of Cheminformatics, vol.9, p.33, 2017.

S. Willmann, K. Höhn, A. Edginton, M. Sevestre, J. Solodenko et al., Development of a Physiology-Based Whole-Body Population Model for Assessing the Influence of Individual Variability on the Pharmacokinetics of Drugs, Journal of Pharmacokinetics and Pharmacodynamics, vol.38, issue.2, pp.401-431, 2007.
DOI : 10.5414/CPP38053

D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava et al., DrugBank: a knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Research, vol.2, issue.suppl_1, pp.901-906, 2008.
DOI : 10.1021/pr0340227

D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali et al., DrugBank: a comprehensive resource for in silico drug discovery and exploration, Nucleic Acids Research, vol.34, issue.90001, pp.668-672, 2006.
DOI : 10.1093/nar/gkj067

O. Wolkenhauer, C. Auffray, O. Brass, J. Clairambault, A. Deutsch et al., Enabling multiscale modeling in systems medicine, Genome Medicine, vol.6, issue.3, p.21, 2014.
DOI : 10.1038/pr.2013.4

URL : https://hal.archives-ouvertes.fr/hal-01109002

M. K. , L. Wong, J. R. Krycer, J. G. Burchfield, D. E. James et al., A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems, FEBS open bio, vol.5, pp.226-239, 2015.

G. Xie, C. Chi, K. Wong, L. Cheng, and . Huang, Panayiotis Constantinides , and Basil Rigas. Regioselective oxidation of phospho-nsaids by human cytochrome p450 and flavin monooxygenase isoforms : Implications for their pharmacokinetic properties and safety, pp.222-254, 2012.

Y. Yamazoe and K. Nagata, In vitro metabolism Food Borne Carcinogens Heterocyclic Amines, pp.74-89, 2000.

Y. Yamazoe, K. Nagata, S. Ozawa, D. W. Gong, and R. Kato, Activation and detoxication of carcinogenic arylamines by sulfation, Princess Takamatsu Symposia, vol.23, pp.154-162, 1995.

C. C. Yang, S. N. Jenq, and H. Lee, Characterization of the carcinogen 2-amino-3,8-dimethylimidazo[4,5- f]quinoxaline in cooking aerosols under domestic conditions, Carcinogenesis, vol.19, issue.2, pp.359-363, 1998.
DOI : 10.1093/carcin/19.2.359

X. Yang, D. R. Doerge, J. G. Teeguarden, and J. W. Fisher, Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A, Toxicology and Applied Pharmacology, vol.289, issue.3, pp.442-456, 2015.
DOI : 10.1016/j.taap.2015.10.016

M. Yousofshahi, S. Manteiga, C. Wu, K. Lee, and S. Hassoun, PROXIMAL: a method for Prediction of Xenobiotic Metabolism, BMC Systems Biology, vol.86, issue.3, p.94, 2015.
DOI : 10.1016/j.bcp.2013.05.016

R. Yuan, S. Madani, X. Wei, K. Reynolds, and S. Huang, Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metabolism and Disposition : The Biological Fate of Chemicals, pp.1311-1319, 2002.

J. Zaretzki, C. Bergeron, P. Rydberg, T. Huang, K. P. Bennett et al., RS-Predictor: A New Tool for Predicting Sites of Cytochrome P450-Mediated Metabolism Applied to CYP 3A4, Journal of Chemical Information and Modeling, vol.51, issue.7, pp.1667-1689, 2011.
DOI : 10.1021/ci2000488

J. Zaretzki, M. Matlock, and S. Swamidass, XenoSite: Accurately Predicting CYP-Mediated Sites of Metabolism with Neural Networks, Journal of Chemical Information and Modeling, vol.53, issue.12, pp.3373-3383, 2013.
DOI : 10.1021/ci400518g

V. Zelesky, R. Schneider, J. Janiszewski, I. Zamora, J. Ferguson et al., Software automation tools for increased throughput metabolic soft-spot identification in early drug discovery, Bioanalysis, vol.272, issue.10, pp.1165-1179, 2013.
DOI : 10.4155/bio.12.134

X. Zhuang and C. Lu, PBPK modeling and simulation in drug research and development, Acta Pharmaceutica Sinica B, vol.6, issue.5, pp.430-440, 2016.
DOI : 10.1016/j.apsb.2016.04.004

URL : https://doi.org/10.1016/j.apsb.2016.04.004

L. Réactivité-avec, ADN des métabolites résultant de la combinaison des réactions d'Hydroxylation (Hy), de Glucuronidation (Glc), d'Acétylation (Ac), de Sulfatation (Su) et d'Oxydation (Ox), p.83

C. Métabolisme-du, MeIQx pour des concentrations initiales de MeIQx de 0.05, 0.1, 0.5 µM après 5

H. Métabolisme-du, (C) µM après 12h d'exposition, Gl pour des concentrations initiales de 0.5 (A), p.112

.. De-potterswheel, Analyse sensitive 2D réalisée à l'aide, p.123

N. Acetyl-bz, -(hydroxyamino)-[1,1'- biphenyl]-4-yl]acetamide 0

. Acetyl-bz, -acetamido-[1,1'- biphenyl]-4- ylamino )oxy]sulfonic acid 0, p.92

N. Annexes, Acetoxy-4-ABP N-acetyl-N-[1,1'-biphenyl]-4- ylacetamide 0, p.78