Trace Theorems for a Class of Ramified Domains with Self-Similar Fractal Boundaries - Université de Rennes Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2009

Trace Theorems for a Class of Ramified Domains with Self-Similar Fractal Boundaries

Yves Achdou
  • Fonction : Auteur
  • PersonId : 829738

Résumé

This work deals with trace theorems for a class of ramified bidimensional domains $\Omega$ with a self-similar fractal boundary $\Gamma^\infty$. The fractal boundary $\Gamma^\infty$ is supplied with a probability measure $\mu$ called the self-similar measure. Emphasis is put on the case when the domain is not a $\epsilon-\delta$ domain as defined by Jones and the fractal set is not totally disconnected. In this case, the classical trace results cannot be used. Here, the Lipschitz spaces with jumps recently introduced by Jonsson play a crucial role. Indeed, it is proved in particular that if the Hausdorff dimension $d$ of $\Gamma^\infty$ is not smaller than one, then the space of the traces of functions in $W^{m+1,q}(\Omega)$, $m\in \N$, $1
Fichier principal
Vignette du fichier
trace2008_7.pdf (864.1 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00353135 , version 1 (15-01-2009)
hal-00353135 , version 2 (10-12-2009)

Identifiants

  • HAL Id : hal-00353135 , version 1

Citer

Yves Achdou, Nicoletta Tchou. Trace Theorems for a Class of Ramified Domains with Self-Similar Fractal Boundaries. 2009. ⟨hal-00353135v1⟩
328 Consultations
246 Téléchargements

Partager

Gmail Facebook X LinkedIn More