Skip to Main content Skip to Navigation
Journal articles

Substitution Effects in Highly Syndioselective Styrene Polymerization Catalysts Based on Single-Component Allyl ansa-Lanthanidocenes: An Experimental and Theoretical Study

Abstract : A series of allyl ansa-lanthanidocenes, [{Me2C(C5H4)-(Flu)}Nd(1,3-C3H3(SiMe3)(2))(2)]K (Flu = 9-fluorenyl; 1-Nd-K(allyl)) and {R2C(C5H4)(R'R'Flu)}Ln(1,3-C3H3(SiMe3)(2))(THF)(x) (R = Me, R' = 2,7-tBu(2), Ln = Y (2-Y), Sc (2-Sc), x = 0; Ln = La (2-La), Pr (2-Pr), Nd (2-Nd), Sm (2-Sm), x = 1; R = Me, R' = oct = octamethyloctahydrodibenzo, Ln = Nd, x = 1 (3-Nd); R = Ph, R' = H, Ln = Nd, x = 1 (4-Nd); R = Me, R' = 3,6-tBu(2), Ln = Nd, x = 1 (5-Nd)), were prepared in good yields and characterized by NMR spectroscopy (for diamagnetic complexes 2-Sc, 2-Y, and 2-La) and by single-crystal X-ray diffraction (1-Nd-K(allyl), 2-La, 2-Pr, 2-Nd, 2-Sm, and 4-Nd). Those complexes, especially 1-Nd-K(allyl), 2-Nd, 4-Nd, 2-La, and 2-Sm, act as single-component catalyst precursors for polymerization of styrene (in bulk or in aliphatic hydrocarbon solutions, (nBu)(2)Mg as scavenger, T-polym = 60-140 C), affording highly syndiotactic polystyrene (sPS) ([r](5) = 63-88%; T-m up to 260 C). High productivities (up to 4560 kg(sPS) mol(Ln)(-1) h(-1)) were achieved at 120-140 C, at low catalyst loadings ([St]/[Nd] = 20000-76000 equiv), with 2-Nd and 2-Pr. On the other hand, precursors having bulky substituents on the fluorenyl moieties in 3,6-positions (3-Nd, 5-Nd) or based on small ionic radius metals (2-Y, 2-Sc) were poorly or not active under standard polymerization conditions. These results have been rationalized by DFT computations, which included the solvent, carried out on the putative 1-Nd, and the isolated 2-Nd and 5-Nd complexes. Three consecutive styrene insertions were studied, and it was revealed that (i) the formation of sPS is thermodynamically controlled by two effects-minimization of repulsions between fluorenyl/styrene phenyl ring and (in the initiation phase) fluorenyl/SiMe3 substituents of the allyl ligand-and (ii) the presence of bulky substituents on the fluorenyl moiety does not influence the activation barrier of monomer insertion, but it may destabilize thermodynamically the insertion product.
Document type :
Journal articles
Complete list of metadatas

Cited literature [35 references]  Display  Hide  Download

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01614773
Contributor : Laurent Jonchère <>
Submitted on : Monday, November 13, 2017 - 10:06:16 AM
Last modification on : Wednesday, October 14, 2020 - 3:49:45 AM
Long-term archiving on: : Wednesday, February 14, 2018 - 2:17:56 PM

File

Substitution Effects in Highly...
Files produced by the author(s)

Identifiers

Citation

Eva Laur, Elisa Louyriac, Vincent Dorcet, Alexandre Welle, Aurélien Vantomme, et al.. Substitution Effects in Highly Syndioselective Styrene Polymerization Catalysts Based on Single-Component Allyl ansa-Lanthanidocenes: An Experimental and Theoretical Study. Macromolecules, American Chemical Society, 2017, 50 (17), pp.6539-6551. ⟨10.1021/acs.macromol.7b00853⟩. ⟨hal-01614773⟩

Share

Metrics

Record views

311

Files downloads

240